On the structure of Lipschitz-free spaces
HTML articles powered by AMS MathViewer
- by Marek Cúth, Michal Doucha and Przemysław Wojtaszczyk
- Proc. Amer. Math. Soc. 144 (2016), 3833-3846
- DOI: https://doi.org/10.1090/proc/13019
- Published electronically: February 17, 2016
- PDF | Request permission
Abstract:
In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of $\ell _1$. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space $K$ such that $\mathcal {F}(K)$ is not isomorphic to a subspace of $L_1$ and we show that whenever $M$ is a subset of $\mathbb {R}^n$, then $\mathcal {F}(M)$ is weakly sequentially complete; in particular, $c_0$ does not embed into $\mathcal {F}(M)$.References
- Israel Aharoni, Every separable metric space is Lipschitz equivalent to a subset of $c^{+}_{0}$, Israel J. Math. 19 (1974), 284–291. MR 511661, DOI 10.1007/BF02757727
- Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- J. Bourgain, On weak completeness of the dual of spaces of analytic and smooth functions, Bull. Soc. Math. Belg. Sér. B 35 (1983), no. 1, 111–118. MR 712065
- J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math. 77 (1984), no. 3, 245–253. MR 745280, DOI 10.4064/sm-77-3-246-253
- Marek Cúth and Michal Doucha, Lipschitz-free spaces over ultrametric spaces, Mediterr. J. Math., electronically published on May 03, 2015, DOI: http://dx.doi.org/10.1007/s00009-015-0566-7 (to appear in print).
- A. Dalet, Free spaces over countable compact metric spaces, Proc. Amer. Math. Soc. 143 (2015), no. 8, 3537–3546. MR 3348795, DOI 10.1090/S0002-9939-2015-12518-X
- Yves Dutrieux and Valentin Ferenczi, The Lipschitz free Banach spaces of $C(K)$-spaces, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1039–1044. MR 2196036, DOI 10.1090/S0002-9939-05-08301-2
- Charles Fefferman, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoamericana 21 (2005), no. 1, 313–348. MR 2155023, DOI 10.4171/RMI/424
- V. P. Fonf and P. Wojtaszczyk, Properties of the Holmes space, Topology Appl. 155 (2008), no. 14, 1627–1633. MR 2435154, DOI 10.1016/j.topol.2008.03.008
- Joanna Garbulińska and Wiesław Kubiś, Remarks on Gurariĭ spaces, Extracta Math. 26 (2011), no. 2, 235–269. MR 2977626
- A. Godard, Tree metrics and their Lipschitz-free spaces, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4311–4320. MR 2680057, DOI 10.1090/S0002-9939-2010-10421-5
- G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906, DOI 10.4064/sm159-1-6
- V. I. Gurariĭ, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Ž. 7 (1966), 1002–1013 (Russian). MR 0200697
- Petr Hájek and Michal Johanis, Smooth analysis in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 19, De Gruyter, Berlin, 2014. MR 3244144, DOI 10.1515/9783110258998
- Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213–227. MR 3356002, DOI 10.4064/sm226-3-2
- Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213–227. MR 3356002, DOI 10.4064/sm226-3-2
- S. V. Kisljakov, Sobolev imbedding operators, and the nonisomorphism of certain Banach spaces, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 22–27 (Russian). MR 0627173
- G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, J. Funct. Anal. 264 (2013), no. 10, 2323–2334. MR 3035057, DOI 10.1016/j.jfa.2013.02.012
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Assaf Naor and Gideon Schechtman, Planar earthmover is not in $L_1$, SIAM J. Comput. 37 (2007), no. 3, 804–826. MR 2341917, DOI 10.1137/05064206X
- Aleš Nekvinda and Luděk Zajíček, A simple proof of the Rademacher theorem, Časopis Pěst. Mat. 113 (1988), no. 4, 337–341 (English, with Russian and Czech summaries). MR 981874, DOI 10.21136/CPM.1988.118346
- I. Protasov, Combinatorics of numbers, Mathematical Studies Monograph Series, vol. 2, VNTL Publishers, L′viv, 1997. Translated from the Russian manuscript by Michael Zarichnyi and Taras Banakh. MR 1723431
- Haskell P. Rosenthal, The Banach spaces $C(K)$, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1547–1602. MR 1999603, DOI 10.1016/S1874-5849(03)80043-8
- Walter Rudin, Principles of mathematical analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. MR 0385023
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645, DOI 10.1142/4100
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277, DOI 10.1017/CBO9780511608735
Bibliographic Information
- Marek Cúth
- Affiliation: Instytut Matematyczny Polskiej Akademii Nauk, Śniadeckich 8, 00-656 Warszawa, Poland
- Address at time of publication: Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Prague 8, Czech Republic
- MR Author ID: 1001508
- ORCID: 0000-0001-6688-8004
- Email: cuth@karlin.mff.cuni.cz
- Michal Doucha
- Affiliation: Instytut Matematyczny Polskiej Akademii Nauk, Śniadeckich 8, 00-656 Warszawa, Poland
- MR Author ID: 984180
- Email: m.doucha@post.cz
- Przemysław Wojtaszczyk
- Affiliation: Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Prosta 69, 02-838 Warszawa, Poland
- MR Author ID: 192029
- Email: wojtaszczyk@icm.edu.pl
- Received by editor(s): May 27, 2015
- Received by editor(s) in revised form: July 14, 2015, and October 28, 2015
- Published electronically: February 17, 2016
- Additional Notes: The first author was supported by the Warsaw Center of Mathematics and Computer Science (KNOW–MNSzW)
The second author was supported by IMPAN’s International Fellowship Programme and partially sponsored by PCOFUND-GA-2012-600415.
The third author was supported by Polish NCN grant UMO-2011/03/B/ST1/04902. - Communicated by: Thomas Schlumprecht
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3833-3846
- MSC (2010): Primary 46B03, 54E35
- DOI: https://doi.org/10.1090/proc/13019
- MathSciNet review: 3513542