Orthogonal polynomials for the weakly equilibrium Cantor sets
HTML articles powered by AMS MathViewer
- by Gökalp Alpan and Alexander Goncharov
- Proc. Amer. Math. Soc. 144 (2016), 3781-3795
- DOI: https://doi.org/10.1090/proc/13025
- Published electronically: May 6, 2016
- PDF | Request permission
Abstract:
Let $K(\gamma )$ be the weakly equilibrium Cantor-type set introduced by the second author in an earlier work. It is proven that the monic orthogonal polynomials $Q_{2^s}$ with respect to the equilibrium measure of $K(\gamma )$ coincide with the Chebyshev polynomials of the set. Procedures are suggested to find $Q_{n}$ of all degrees and the corresponding Jacobi parameters. It is shown that the sequence of the Widom factors is bounded below.References
- Gökalp Alpan and Alexander Goncharov, Two measures on Cantor sets, J. Approx. Theory 186 (2014), 28–32. MR 3251460, DOI 10.1016/j.jat.2014.07.003
- G. Alpan and A. Goncharov, Orthogonal polynomials on generalized Julia sets, Preprint (2015), arXiv:1503.07098v3
- Artur Avila and Svetlana Jitomirskaya, The Ten Martini Problem, Ann. of Math. (2) 170 (2009), no. 1, 303–342. MR 2521117, DOI 10.4007/annals.2009.170.303
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 381–384. MR 663789, DOI 10.1090/S0273-0979-1982-15043-1
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Infinite-dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc. 88 (1983), no. 4, 625–630. MR 702288, DOI 10.1090/S0002-9939-1983-0702288-6
- M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Almost periodic Jacobi matrices associated with Julia sets for polynomials, Comm. Math. Phys. 99 (1985), no. 3, 303–317. MR 795106, DOI 10.1007/BF01240350
- J. Bellissard, D. Bessis, and P. Moussa, Chaotic States of Almost Periodic Schrödinger Operators, Phys. Rev. Lett. 49, 701–704 (1982)
- D. Bessis and P. Moussa, Orthogonality properties of iterated polynomial mappings, Comm. Math. Phys. 88 (1983), no. 4, 503–529. MR 702566, DOI 10.1007/BF01211956
- Rainer Brück and Matthias Büger, Generalized iteration, Comput. Methods Funct. Theory 3 (2003), no. 1-2, [On table of contents: 2004], 201–252. MR 2082015, DOI 10.1007/BF03321035
- Jacob S. Christiansen, Szegő’s theorem on Parreau-Widom sets, Adv. Math. 229 (2012), no. 2, 1180–1204. MR 2855090, DOI 10.1016/j.aim.2011.09.012
- Jacob S. Christiansen, Barry Simon, and Maxim Zinchenko, Finite gap Jacobi matrices, I. The isospectral torus, Constr. Approx. 32 (2010), no. 1, 1–65. MR 2659747, DOI 10.1007/s00365-009-9057-z
- Jacob S. Christiansen, Barry Simon, and Maxim Zinchenko, Finite gap Jacobi matrices, II. The Szegő class, Constr. Approx. 33 (2011), no. 3, 365–403. MR 2784484, DOI 10.1007/s00365-010-9094-7
- Jacob S. Christiansen, Barry Simon, and Maxim Zinchenko, Finite gap Jacobi matrices: a review, Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesy’s 60th birthday, Proc. Sympos. Pure Math., vol. 87, Amer. Math. Soc., Providence, RI, 2013, pp. 87–103. MR 3087900, DOI 10.1090/pspum/087/01429
- J. Dombrowski, Quasitriangular matrices, Proc. Amer. Math. Soc. 69 (1978), no. 1, 95–96. MR 467373, DOI 10.1090/S0002-9939-1978-0467373-3
- J. S. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), no. 2, 559–581. MR 951620, DOI 10.1090/S0002-9947-1988-0951620-6
- Alexander P. Goncharov, Weakly equilibrium Cantor-type sets, Potential Anal. 40 (2014), no. 2, 143–161. MR 3152159, DOI 10.1007/s11118-013-9344-y
- Steven M. Heilman, Philip Owrutsky, and Robert S. Strichartz, Orthogonal polynomials with respect to self-similar measures, Exp. Math. 20 (2011), no. 3, 238–259. MR 2836250, DOI 10.1080/10586458.2011.564966
- H. Krüger and B. Simon, Cantor polynomials and some related classes of OPRL, J. Approx. Theory (2014), http://dx.doi.org/10.1016/j.jat.2014.04.003
- N. G. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, LOMI preprint, E-6-86, Steklov Mathematical Institute, Leningrad (1986)
- G. Mantica, A stable Stieltjes technique for computing orthogonal polynomials and Jacobi matrices associated with a class of singular measures, Constr. Approx. 12 (1996), no. 4, 509–530. MR 1412197, DOI 10.1007/s003659900028
- G. Mantica, Quantum Intermittency in Almost-Periodic Lattice Systems derived from their Spectral Properties, Physica D, 103, 576–589 (1997)
- G. Mantica, Numerical computation of the isospectral torus of finite gap sets and of IFS Cantor sets, Preprint (2015), arXiv:1503.03801
- Franz Peherstorfer and Peter Yuditskii, Asymptotic behavior of polynomials orthonormal on a homogeneous set, J. Anal. Math. 89 (2003), 113–154. MR 1981915, DOI 10.1007/BF02893078
- Alexei Poltoratski and Christian Remling, Reflectionless Herglotz functions and Jacobi matrices, Comm. Math. Phys. 288 (2009), no. 3, 1007–1021. MR 2504863, DOI 10.1007/s00220-008-0696-x
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
- Barry Simon, Almost periodic Schrödinger operators: a review, Adv. in Appl. Math. 3 (1982), no. 4, 463–490. MR 682631, DOI 10.1016/S0196-8858(82)80018-3
- Barry Simon, Equilibrium measures and capacities in spectral theory, Inverse Probl. Imaging 1 (2007), no. 4, 713–772. MR 2350223, DOI 10.3934/ipi.2007.1.713
- Mikhail Sodin and Peter Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions, J. Geom. Anal. 7 (1997), no. 3, 387–435. MR 1674798, DOI 10.1007/BF02921627
- Vilmos Totik, Orthogonal polynomials, Surv. Approx. Theory 1 (2005), 70–125. MR 2221567
- Harold Widom, Polynomials associated with measures in the complex plane, J. Math. Mech. 16 (1967), 997–1013. MR 0209448
- Harold Widom, Extremal polynomials associated with a system of curves in the complex plane, Advances in Math. 3 (1969), 127–232. MR 239059, DOI 10.1016/0001-8708(69)90005-X
Bibliographic Information
- Gökalp Alpan
- Affiliation: Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
- Email: gokalp@fen.bilkent.edu.tr
- Alexander Goncharov
- Affiliation: Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
- MR Author ID: 194620
- Email: goncha@fen.bilkent.edu.tr
- Received by editor(s): June 19, 2015
- Received by editor(s) in revised form: October 22, 2015
- Published electronically: May 6, 2016
- Additional Notes: The authors were partially supported by a grant from Tübitak: 115F199.
The authors thank the anonymous referee for pointing out the articles [4, 8, 20–22] - Communicated by: Walter Van Assche
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3781-3795
- MSC (2010): Primary 42C05, 47B36; Secondary 31A15
- DOI: https://doi.org/10.1090/proc/13025
- MathSciNet review: 3513538