On the asymptotic mean value property for planar $p$-harmonic functions
HTML articles powered by AMS MathViewer
- by Ángel Arroyo and José G. Llorente
- Proc. Amer. Math. Soc. 144 (2016), 3859-3868
- DOI: https://doi.org/10.1090/proc/13026
- Published electronically: February 17, 2016
- PDF | Request permission
Abstract:
We show that $p$-harmonic functions in the plane satisfy a nonlinear asymptotic mean value property for $p>1$. This extends previous results of Manfredi and Lindqvist for a certain range of $p$’s.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- B. Bojarski and T. Iwaniec, $p$-harmonic equation and quasiregular mappings, Partial differential equations (Warsaw, 1984) Banach Center Publ., vol. 19, PWN, Warsaw, 1987, pp. 25–38. MR 1055157
- Tadeusz Iwaniec and Juan J. Manfredi, Regularity of $p$-harmonic functions on the plane, Rev. Mat. Iberoamericana 5 (1989), no. 1-2, 1–19. MR 1057335, DOI 10.4171/RMI/82
- Petri Juutinen, Peter Lindqvist, and Juan J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), no. 3, 699–717. MR 1871417, DOI 10.1137/S0036141000372179
- John L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (1983), no. 6, 849–858. MR 721568, DOI 10.1512/iumj.1983.32.32058
- Peter Lindqvist and Juan Manfredi, On the mean value property for the $p$-Laplace equation in the plane, Proc. Amer. Math. Soc. 144 (2016), no. 1, 143–149. MR 3415584, DOI 10.1090/proc/12675
- Juan J. Manfredi, Mikko Parviainen, and Julio D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881–889. MR 2566554, DOI 10.1090/S0002-9939-09-10183-1
- N. N. Ural′ceva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184–222 (Russian). MR 0244628
Bibliographic Information
- Ángel Arroyo
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Spain
- Email: arroyo@mat.uab.cat
- José G. Llorente
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Spain
- MR Author ID: 327617
- Email: jgllorente@mat.uab.cat
- Received by editor(s): September 4, 2015
- Received by editor(s) in revised form: October 29, 2015
- Published electronically: February 17, 2016
- Additional Notes: The authors were partially supported by grants MTM2011-24606, MTM2014-51824-P and 2014 SGR 75.
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3859-3868
- MSC (2010): Primary 31C05, 35J92, 35J62
- DOI: https://doi.org/10.1090/proc/13026
- MathSciNet review: 3513544