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Abstract. Let I ⊂ N be an infinite subset, and let {ai}i∈I be a sequence

of nonzero real numbers indexed by I such that there exist positive constants
m,C1 for which |ai| ≤ C1 · im for all i ∈ I. Furthermore, let ci ∈ [−1, 1] be
defined by ci =

ai
C1·im for each i ∈ I, and suppose the ci’s are equidistributed

in [−1, 1] with respect to a continuous, symmetric probability measure μ. In
this paper, we show that if I ⊂ N is not too sparse, then the sequence {ai}i∈I
fails to obey Benford’s Law with respect to arithmetic density in any suffi-
ciently large base, and in fact in any base when μ([0, t]) is a strictly convex
function of t ∈ (0, 1). Nonetheless, we also provide conditions on the density of
I ⊂ N under which the sequence {ai}i∈I satisfies Benford’s Law with respect
to logarithmic density in every base.

As an application, we apply our general result to study Benford’s Law-type
behavior in the leading digits of Frobenius traces of newforms of positive, even
weight. Our methods of proof build on the work of Jameson, Thorner, and Ye,
who studied the particular case of newforms without complex multiplication.

1. Introduction

It was first noted in 1881 by astronomer Simon Newcomb that when numbers
occur in the real world, their leading digits tend not to be uniformly distributed.
Specifically, Newcomb observed while studying tables of logarithms that certain
pages were more worn away than others, especially those pages corresponding to
logarithms whose first digit is 1 [11]. In 1938, physicist Frank Benford corroborated
this hypothesis in a considerably more general setting by testing it on an extensive
data set including population sizes, physical constants, molecular weights, and even
the surface areas of rivers [2]. This bias toward certain initial digits, which is known
as Benford’s Law, has since been discovered to hold for a number of distributions
that arise in modern mathematics (see [11] for an informative exposition on the
subject). But before we discuss specific examples of sequences that obey Benford’s
Law, we must pause to state the law in a precise and general manner.

1.1. Definitions. Let N denote the set of positive integers, and let I ⊂ N be an
infinite subset. Given an infinite sequence a = {ai}i∈I of nonzero real numbers
indexed by I and a subset A ⊂ R, we can associate to the pair (a, A) an arithmetic
density d(a, A) that is given by

(1.1) d(a, A) ··= lim
x→∞

#{i ≤ x : i ∈ I and ai ∈ A}
#{i ≤ x : i ∈ I} ,
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if the limit exists. The above definition serves as a means of quantifying the density
of elements of the set A in the sequence a = {ai}i∈I . We say that a is (arithmeti-
cally) Benford in base b if for any (nonzero) string of base-b digits Sb, we have
that

d(a, b, Sb) ··= d
(
a, {x ∈ R : |x| begins with Sb in base b}

)
= logb(1 + S−1

b ),

where in computing the logarithm, we interpret Sb as an integer. For example, if a is
Benford in base 10, then the terms ai start with the digit 1 about d(a, 10, 1) ≈ 30%
of the time and with the digit 9 about d(a, 10, 9) ≈ 4.5% of the time.

A number of sequences of arithmetic interest, such as the sequence of factorials
and the partition function, are Benford in any base b ≥ 2. Benford’s Law has also
been proven for the distribution of values taken by L-functions [7], data from dy-
namical systems (e.g. linearly-dominated systems and nonautonomous dynamical
systems) [3], and truncated progressions of the 3x+ 1 problem [7], [8].

Nonetheless, there are many natural sequences of numbers that do not satisfy
this strong property – most notably the set of positive integers N, which fails to
be Benford in any base b ≥ 2. However, it is possible to show that such sequences
still demonstrate a Benford-type behavior, as long as we consider a different, more
inclusive notion of density. Given a sequence a = {ai}i∈I and A as before, and
letting I≤x = {i ∈ I : i ≤ x}, we can associate to the pair (a, A) a logarithmic
density δ(a, A) defined as

(1.2) δ(a, A) ··= lim
x→∞

∑
i∈I≤x,ai∈A

1
i

∑
i∈I≤x

1
i

,

if the limit exists. We then say that the sequence a is logarithmically Benford in
base b if for any (nonzero) string of base-b digits Sb, we have that

δ(a, b, Sb) ··= δ
(
a, {x ∈ R : |x| begins with Sb in base b}

)
= logb(1 + S−1

b ).

It is known (e.g., see [10]) that if the arithmetic density d(a, A) exists, then the
logarithmic density δ(a, A) also exists and equals d(a, A). However, the converse of
this statement is false; as stated in [4], both the sequence of natural numbers and
that of prime numbers are logarithmically Benford with respect to any string Sb

in any base b. Therefore, the condition of being logarithmically Benford is strictly
weaker than that of being arithmetically Benford.

Remark. There are other types of density, such as Dirichlet density, that are strictly
weaker than arithmetic density (in fact, Dirichlet density is strictly weaker than
logarithmic density). In this paper, we restrict our consideration to arithmetic and
logarithmic densities, as these are the most commonly studied. It may however be
interesting to determine whether there are sequences of mathematical importance
that satisfy Benford’s Law with respect to other types of density. For example,
it is known that the primes are Benford with respect to logarithmic (and hence
Dirichlet) density. See [9] for a description of generalized asymptotic densities, and
see [14] for a discussion of Dirichlet density in particular.

1.2. Statement of results. One interesting occurrence of the logarithmic Benford
property lies in the study of Fourier coefficients of certain modular forms, namely
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newforms (i.e., holomorphic cuspidal normalized Hecke eigenforms; see [12] for a
standard reference). In [6], Jameson, Thorner, and Ye employed the Sato-Tate
conjecture to show that for a newform f of even weight without complex multipli-
cation, the sequence {af (p) : p prime} of Frobenius traces of f is not arithmetically
Benford in any base b ≥ 2, but is logarithmically Benford in every base. As we
show in this paper, the method of proof employed in [6] can be modified to yield
more general results about when sequences are logarithmically Benford but not
arithmetically Benford. Moreover, we prove as a corollary that the theorems of
Jameson, Thorner, and Ye hold for such newforms with complex multiplication as
well.

We shall consider sequences a = {ai}∈I whose growth is bounded by a power
function of the index i; specifically, suppose there exist constants m,C1 > 0 such
that |ai| ≤ C1 · im for all i ∈ I. As noted in [1], proving that a sequence is
Benford usually requires an equidistribution result of some sort as input, so we
impose the following assumption on our sequence a: taking ci ∈ [−1, 1] to be
defined by ci =

ai

C1·im for each i ∈ I, suppose the ci’s are equidistributed in [−1, 1]
with respect to a continuous, symmetric probability measure μ. Note that this
assumption implies that for any [A,B] ⊂ [−1, 1] we have

(1.3)
#{i ≤ x : i ∈ I and ci ∈ [A,B]}

#{i ≤ x : i ∈ I} = (1 + o(1)) · μ([A,B]),

from which one readily deduces that

(1.4)
∑

i∈I≤x

ci∈[A,B]

1

i
= (1 + o(1)) · μ([A,B]) ·

∑
i∈I≤x

1

i
.

We wish to determine whether the sequence a is arithmetically, or at least loga-
rithmically, Benford in any base b ≥ 2. To this end, we prove two main theorems,
the first of which is stated as follows.

Theorem 1.1. Retain the above setting, and suppose for every c > 1 that I ∩
[x, cx] �= ∅ for all sufficiently large x. Then a is not arithmetically Benford in
any sufficiently large base. If in addition μ([0, t]) is a strictly convex function of
t ∈ (0, 1), then a is not arithmetically Benford in any base b ≥ 2.

On the other hand, our second theorem indicates conditions under which the
sequence a is logarithmically Benford in every base b ≥ 2.

Theorem 1.2. Retain the above setting, and suppose I is such that
∑

i∈I≤x

1
i =

(1+o(1)) ·C2 ·g(x), where C2 > 0 is a constant and where we may take g(x) = log x
or g(x) = log log x. Then a is logarithmically Benford in every base b ≥ 2.

Remark. We note that the assumptions made in stating the above theorems are
reasonable. Indeed, as shown in [1], certain sequences with more than polynomial
growth are known to be arithmetically Benford. Furthermore, the proof of Theo-
rem 1.2 depends heavily on the particular properties of the functions g(x) = log x
and g(x) = log log x.

The rest of this paper is organized as follows. Section 2 presents the proof of
Theorem 1.1, and Section 3 discusses the proof of Theorem 1.2. Section 4 concludes
the paper with an application of Theorems 1.1 and 1.2 to studying Benford’s Law-
type behavior in the sequence of Frobenius traces of a newform.
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2. Proof of Theorem 1.1

To begin with, we observe that the proof of Theorem 1 in [6] works, mutatis
mutandis, to prove that a is not arithmetically Benford in any sufficiently large
base. Indeed, the only conditions that the proof of [6] ever uses are that I have
nontrivial intersection with every sufficiently large subinterval of N and that μ be
symmetric and continuous. However, as we will now show, the case where μ([0, t])
is strictly convex has a much cleaner proof.

Suppose b ≥ 3, and let 1b be the string of digits whose only character is the
digit 1, interpreted in the base b. We will prove that when Sb = 1b, the limit (1.1)
defining the arithmetic density

d
(
a, b, 1b

)
does not exist, which is enough to imply the theorem in this case. Assume for the
sake of contradiction that this limit exists, and for every n ∈ N, put

I−n ··=
{
i ∈ I :

40

23
bn ≤ C1 · im < 2bn

}
.

Observe that I−n �= ∅ for sufficiently large n because of our assumption on the
sparseness of I ⊂ N. Suppose that for some i ∈ I−n there exists nonnegative integer
j such that

23

40
b−j ≤ |ci| ≤ b−j .

Then, we have by the definition of ci that

bn−j ≤ |ai| < 2bn−j ,

from which we readily deduce that |ai| begins with the digit 1 in base b. Now,
by appealing to Theorem 4.1, we have the following lower bound on the desired
density:

d
(
a, b, 1b

)
= lim

n→∞

#{i ∈ I−n : ai begins with 1b}
#I−n

≥
∞∑
j=0

lim
n→∞

#{i ∈ I−n : 23
40b

−j ≤ |ci| ≤ b−j}
#I−n

= 2

∞∑
j=0

μ

([
23

40
b−j , b−j

])
.(2.1)

We wish to derive an upper bound on d
(
a, b, 1b

)
in a similar manner. Consider

indices i such that bn ≤ |ai| < 2bn, and define the interval

I+n ··=
{
i ∈ I :

5

2
bn < C1 · im ≤ 8

3
bn

}
.

If |ai| begins with the digit 1, and i ∈ I+n , we deduce that 3
8b

−j ≤ |ci| ≤ 4
5b

−j for
some integer j; but as b ≥ 3 and |ci| ≤ 1 this only makes sense for j ≥ 0. Thus we
obtain an upper bound

d
(
a, b, 1b

)
= lim

n→∞

#{i ∈ I+n : ai begins with 1b}
#I+n

≤ 2
∞∑
j=0

μ

([
3

8
b−j ,

4

5
b−j

])
.(2.2)
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Combining (2.1) and (2.2), we get

∞∑
j=0

μ

([
23

40
b−j , b−j

])
≤

∞∑
j=0

μ

([
3

8
b−j ,

4

5
b−j

])
,

but this contradicts our convexity assumption; we have for all x ∈ (0, 1) that

μ

([
23

40
x, x

])
> μ

([
3

8
x,

4

5
x

])
.

For b = 2, a similar argument can be employed, but we cannot simply take the
string 1b since d(a, 1, 1b) trivially equals 1 = log2(1 + 1−1). Instead, we repeat the
above argument using the string 10b; the lower bound is obtained by counting i ∈ I
with

11

15
· 4−j ≤ |ci| ≤ 4−j

across the interval 30
11 · 4n ≤ C1 · im < 3 · 4n, whilst the upper bound is obtained by

counting i ∈ I with
2

5
· 4−j ≤ |ci| ≤

2

3
· 4−j

across the interval 9
2 ·4n ≤ C1·im < 5·4n. We can then obtain a similar contradiction

by using the convexity assumption on μ to see that μ
([

11
15x, x

])
> μ

([
2
5x,

2
3x

])
for

all x ∈ (0, 1).

3. Proof of Theorem 1.2

Recall the assumptions of Theorem 1.2: we take our measure μ to be symmetric
and our index set I to satisfy

∑
i∈I≤x

1
i = (1 + o(1)) · C2 · g(x), where C2 >

0 is a constant and where g(x) = log x or g(x) = log log x. To show that a is
logarithmically Benford in any base b ≥ 2, it suffices to show that

(3.1)
∑

i∈I≤x

ai∈A(b,Sb)

1

i
= (1 + o(1)) · logb(1 + S−1

b ) · (C2 · g(x)),

where A(b, Sb) = {x ∈ R : |x| begins with Sb in base b}. Let r ∈ N, to be specified
later, and split the sum on the left-hand side of (3.1) into two pieces, according to
whether |ci| ≤ 1

r or |ci| > 1
r :

(3.2)
∑

i∈I≤x

ai∈A(b,Sb)

1

i
=

∑
i∈I≤x

ai∈A(b,Sb)
|ci|≤1/r

1

i
+

∑
i∈I≤x

ai∈A(b,Sb)
|ci|>1/r

1

i
.

It is fairly straightforward to bound the first sum on the right-hand side of (3.2):

(3.3)
∑

i∈I≤x

ai∈A(b,Sb)
|ci|≤1/r

1

i
≤

∑
i∈I≤x

|ci|≤1/r

1

i
= (1 + o(1)) · 2μ([0, r−1]) · (C2 · g(x)).

Estimating the second sum on the right-hand side of (3.2) is certainly more involved;
the following Lemma 3.1 shows how this can be done by making explicit use of our
assumption that g(x) = log x or g(x) = log log x.
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Lemma 3.1. For an initial string Sb of digits in a given base b ≥ 2 and an integer
r ≥ 2, we have that as x → ∞,

(1 + o(1)) ·
(
logb(1 + S−1

b )− logb(1 + r−1)
)
· (C2 · g(x))

≤
∑

i∈I≤x

ai∈A(b,Sb)
|ci|>1/r

1

i

≤ (1 + o(1)) ·
(
logb(1 + S−1

b ) + logb(1 + r−1)
)
· (C2 · g(x)) +K · g(r),

for some constant K > 0, possibly depending on the fixed parameters b, Sb, m, and
C1.

Proof. In what follows we shall give a proof of the upper bound; we omit the proof
of the lower bound because it is analogous. Upon observing that we may write

A(b, Sb) =

∞⋃
t=−∞

{x ∈ R : |x| ∈ [Sb · bt, (Sb + 1) · bt)},

we can split the desired sum as follows:

(3.4)
∑

i∈I≤x

ai∈A(b,Sb)
|ci|>1/r

1

i
=

∞∑
t=−∞

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
|ci|>1/r

1

i
.

When t < 0 and |ci| > 1/r, the condition that Sb ·bt ≤ |ai| = C1 ·im ·|ci| ≤ (Sb+1)·bt

implies that i ≤
(

Sb+1
C1·b r

) 1
m

, so the terms with t < 0 in (3.4) can be bounded as

follows:
−1∑

t=−∞

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
|ci|>1/r

1

i
≤

∑
i∈I

i≤
(
C2·Sb+1

C1·b r
) 1

m

1

i
≤ K · g(r)

for some constant K > 0, possibly depending on the fixed parameters m, b, Sb, and
C1. We may now restrict our attention to the terms with t ≥ 0 in (3.4); to bound
these terms, we split the sum even further:

∞∑
t=0

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
|ci|>1/r

1

i
=

r2−1∑
j=r

∞∑
t=0

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
j/r2<|ci|≤(j+1)/r2

1

i
,

where we can afford to be loose about the order of summation because the con-
tribution is 0 for all but finitely many values of t. When j

r2 ≤ |ci| ≤ j+1
r2 , the

condition Sb · bt ≤ |ai| = C1 · im · |ci| ≤ (Sb + 1) · bt implies that
(

Sb·bt
C1·(j+1)r

2
) 1

m ≤

i ≤
(

(Sb+1)·bt
C1·j r2

) 1
m

; this observation along with (1.4) and the condition that μ is
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symmetric allows us to make the following estimates:

∞∑
t=0

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
|ci|>1/r

1

i

≤
r2−1∑
j=r

∞∑
t=0

∑
i∈I≤x(

Sb·b
t

C1·(j+1)
r2

) 1
m ≤i≤

(
(Sb+1)·bt

C1·j r2
) 1

m

j/r2<|ci|≤(j+1)/r2

1

i

=

r2−1∑
j=r

(1 + o(1)) · 2μ([ j
r2 ,

j+1
r2 ])

∞∑
t=0

∑
i∈I≤x(

Sb·b
t

C1·(j+1)
r2

) 1
m ≤i≤

(
(Sb+1)·bt

C1·j r2
) 1

m

1

i
.

The condition that i ≤ x implies that for a given j, all terms with
(

(Sb+1)·bt
C1·j r2

) 1
m

>

x, or equivalently t > logb
C1·jxm

(Sb+1)r2 , do not contribute to the sum. If we take

g(x) = log x, we have

∞∑
t=0

∑
i∈I≤x

Sb·bt≤|ai|<(Sb+1)·bt
|ci|>1/r

1

i

≤ (1 + o(1)) · C2 · 2μ([ j
r2 ,

j+1
r2 ]) · logb C1·jxm

(Sb+1)r2 ·
log

(
(1 + S−1

b )(1 + j−1)
)

m

≤ (1 + o(1)) · C2 · log
C1 · xm

Sb + 1
·
(
logb(1 + S−1

b ) + logb(1 + r−1)
)

m

= (1 + o(1)) ·
(
logb(1 + S−1

b ) + logb(1 + r−1)
)
· (C2 · g(x)),

which is the desired bound. If on the other hand we take g(x) = log log x, it is easy
to check that the proof given in [6] works mutatis mutandis in our case, the only
significant difference being the additional factor of C2. �

We now proceed with the proof of Lemma 3.1. Applying Lemma 3.1 to bound
the second sum on the right-hand side of (3.2) from above and below and combining
the result with our bound (3.3) on the first sum yields that

(1 + o(1)) · (logb(1 + S−1
b )− logb(1 + r−1)) · (C2 · g(x))

≤
∑

i∈I≤x

ai∈A(b,Sb)

1

i

≤ (1 + o(1)) · (logb(1 + S−1
b ) + logb(1 + r−1)

+ 2μ([0, r−1])) · (C2 · g(x)) +K · g(r).
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Let ε ∈ (0, logb 2), and take r > (bε − 1)−1 so that 2μ[(0, r−1)] < ε. Further taking
x > max{r1/ε, exp((log r)1/ε)}, we find that

(1 + o(1)) · (logb(1 + S−1
b )− ε) · (C2 · g(x))

≤
∑

i∈I≤x

ai∈A(b,Sb)

1

i

≤ (1 + o(1)) ·
(
logb(1 + S−1

b ) + 2ε+
K · g(r)
C2 · g(x)

)
· (C2 · g(x))

≤ (1 + o(1)) ·
(
logb(1 + S−1

b ) + 2ε+
K

C2
ε

)
· (C2 · g(x)).

Taking ε → 0, we obtain the desired result.

4. Frobenius traces of newforms

We now apply the results of Theorems 1.1 and 1.2 to study the Frobenius traces
of newforms. As the case of newforms without complex multiplication is studied
in [6], we shall consider the case of newforms with complex multiplication; however,
we note that the theorems stated in this section hold in both cases.

Given a newform f ∈ Snew
k (Γ0(N)) of even weight k ≥ 2 and trivial nebentypus

on Γ0(N) that has complex multiplication by an order in a (necessarily imaginary
quadratic) number field K, let af (p) denote the trace of Frobenius of f at p for
primes p. Recall that af (p) = 0 for primes p if and only if p is inert or ramified in
OK . Thus, we restrict our attention to the traces of Frobenius af (p) at primes p
that split in OK (discarding the finitely many ramified primes). For convenience,
let PK denote the set of primes that split in OK , and for every x > 0, let PK≤x =
{p ∈ PK : p ≤ x}. By the Chebotarev Density Theorem, PK has arithmetic density,
and hence logarithmic density, equal to 1

2 in the set of all primes. Therefore, we
have that

∑
p≤x

1

p
= (1 + o(1)) · log log x ⇒

∑
p∈PK≤x

1

p
= (1 + o(1)) · 1

2
· log log x,

where the asymptotic on the left-hand side of the above implication follows from
the proof of Dirichlet’s Theorem for primes in arithmetic progressions.

For each prime p ∈ PK , let cos θp = af (p)/
(
2p

k−1
2

)
∈ [−1, 1]; this is well defined

by the Hasse bound. Recall that a newform has complex multiplication by an
imaginary quadratic field K if and only if it comes from a Grössencharakter of
K (see Proposition 4.4 and Theorem 4.5 of [13]). So, by Hecke’s equidistribution
result [5] for the angles given by Grössencharakters of imaginary quadratic fields
over Q, we have the following:

Theorem 4.1. Let f ∈ Snew
k (Γ0(N)) be a newform of even weight k ≥ 2 and trivial

nebentypus on Γ0(N) that has complex multiplication by an order in a (necessarily
imaginary quadratic) number field K. Then, for any subinterval [A,B] ⊂ [−1, 1],
we have that

lim
x→∞

#{p ≤ x : p ∈ PK and cos θp ∈ [A,B]}
#{p ≤ x : p ∈ PK} = μ([A,B]),
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where μ is the complex-multiplication analogue of the Sato-Tate measure, defined
by

(4.1) dμ =
1

π

dt√
1− t2

.

Note that the measure μ defined in (4.1) has the desired convexity property.
From the above discussion, it follows that the sequence {af (p) : p prime} fulfills
the hypotheses of Theorems 1.1 and 1.2. Thus, we obtain the following results as
immediate corollaries:

Theorem 4.2. Retain the setting of Theorem 4.1. The sequence {af (p)}p∈PK
is

not arithmetically Benford in any base b ≥ 2.

Theorem 4.3. Retain the setting of Theorem 4.1. The sequence {af (p)}p∈PK
is

logarithmically Benford in every base b ≥ 2.

In summary, we have shown that the Benford’s Law-type results on the Frobe-
nius traces of newforms without complex multiplication proven in [6] also hold for
newforms with complex multiplication.
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