Projections in $L^1(G)$: the unimodular case
HTML articles powered by AMS MathViewer
- by Mahmood Alaghmandan, Mahya Ghandehari, Nico Spronk and Keith F. Taylor
- Proc. Amer. Math. Soc. 144 (2016), 4929-4941
- DOI: https://doi.org/10.1090/proc/13142
- Published electronically: April 27, 2016
- PDF | Request permission
Abstract:
We consider the issue of describing all self-adjoint idempotents (projections) in $L^1(G)$ when $G$ is a unimodular locally compact group. The approach is to take advantage of known facts concerning subspaces of the Fourier-Stieltjes and Fourier algebras of $G$ and the topology of the dual space of $G$. We obtain an explicit description of any projection in $L^1(G)$ which happens to also lie in the coefficient space of a finite direct sum of irreducible representations. This leads to a complete description of all projections in $L^1(G)$ for $G$ belonging to a class of groups that includes $\textrm {SL}_2({\mathbb R})$ and all second countable almost connected nilpotent locally compact groups.References
- Gilbert Arsac, Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire, Publ. Dép. Math. (Lyon) 13 (1976), no. 2, 1–101 (French). MR 444833
- Bruce A. Barnes, The role of minimal idempotents in the representation theory of locally compact groups, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 2, 229–238. MR 597128, DOI 10.1017/S0013091500003114
- I. N. Bernšteĭn, All reductive ${\mathfrak {p}}$-adic groups are of type I, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 3–6 (Russian). MR 0348045
- Paul J. Cohen, Homomorphisms and idempotents of group algebras, Bull. Amer. Math. Soc. 65 (1959), 120–122. MR 151548, DOI 10.1090/S0002-9904-1959-10286-X
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Pierre Eymard and Marianne Terp, La transformation de Fourier et son inverse sur le groupe des $ax+b$ d’un corps local, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Math., vol. 739, Springer, Berlin, 1979, pp. 207–248 (French). MR 560840
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Frederick P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187–1219. MR 194911, DOI 10.2140/pjm.1965.15.1187
- Karlheinz Gröchenig, Eberhard Kaniuth, and Keith F. Taylor, Compact open sets in duals and projections in $L^1$-algebras of certain semi-direct product groups, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 545–556. MR 1151331, DOI 10.1017/S0305004100075629
- Henry Helson, Note on harmonic functions, Proc. Amer. Math. Soc. 4 (1953), 686–691. MR 58027, DOI 10.1090/S0002-9939-1953-0058027-9
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Eberhard Kaniuth and Keith F. Taylor, Projections in $C^*$-algebras of nilpotent groups, Manuscripta Math. 65 (1989), no. 1, 93–111. MR 1006629, DOI 10.1007/BF01168369
- Eberhard Kaniuth and Keith F. Taylor, Minimal projections in $L^1$-algebras and open points in the dual spaces of semi-direct product groups, J. London Math. Soc. (2) 53 (1996), no. 1, 141–157. MR 1362692, DOI 10.1112/jlms/53.1.141
- Eberhard Kaniuth and Keith F. Taylor, Compact open sets in dual spaces and projections in group algebras of $[\textrm {FC}]^-$ groups, Monatsh. Math. 165 (2012), no. 3-4, 335–352. MR 2891258, DOI 10.1007/s00605-010-0251-7
- Eberhard Kaniuth and Keith F. Taylor, Induced representations of locally compact groups, Cambridge Tracts in Mathematics, vol. 197, Cambridge University Press, Cambridge, 2013. MR 3012851
- E. Kotzmann, V. Losert, and H. Rindler, Dense ideals of group algebras, Math. Ann. 246 (1979/80), no. 1, 1–14. MR 554127, DOI 10.1007/BF01352021
- Ronald L. Lipsman, Group representations, Lecture Notes in Mathematics, Vol. 388, Springer-Verlag, Berlin-New York, 1974. A survey of some current topics. MR 0372116, DOI 10.1007/BFb0057145
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503, DOI 10.1017/CBO9780511574757.003
- Walter Rudin, Idempotent measures on Abelian groups, Pacific J. Math. 9 (1959), 195–209. MR 105593, DOI 10.2140/pjm.1959.9.195
- Ross Stokke, Homomorphisms of convolution algebras, J. Funct. Anal. 261 (2011), no. 12, 3665–3695. MR 2838038, DOI 10.1016/j.jfa.2011.08.014
- Alain Valette, Minimal projections, integrable representations and property $(\textrm {T})$, Arch. Math. (Basel) 43 (1984), no. 5, 397–406. MR 773186, DOI 10.1007/BF01193846
Bibliographic Information
- Mahmood Alaghmandan
- Affiliation: Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, S-412 96 Göteborg, Sweden
- Email: mahala@chalmers.se
- Mahya Ghandehari
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 741919
- Email: mahya@udel.edu
- Nico Spronk
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- MR Author ID: 671665
- Email: nspronk@uwaterloo.ca
- Keith F. Taylor
- Affiliation: Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
- MR Author ID: 171225
- Email: keith.taylor@dal.ca
- Received by editor(s): October 21, 2015
- Received by editor(s) in revised form: January 22, 2016
- Published electronically: April 27, 2016
- Additional Notes: The first two authors were supported by Fields Institute postdoctoral fellowships and postdoctoral fellowships at the University of Waterloo. The second author was supported by an AARMS postdoctoral fellowship while at Dalhousie University. The third and fourth authors were supported by NSERC of Canada Discovery Grants.
- Communicated by: Pamela Gorkin
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 4929-4941
- MSC (2010): Primary 43A20; Secondary 43A22
- DOI: https://doi.org/10.1090/proc/13142
- MathSciNet review: 3544540