Weak Banach-Saks property and Komlós’ theorem for preduals of JBW$^*$-triples
HTML articles powered by AMS MathViewer
- by Antonio M. Peralta and Hermann Pfitzner PDF
- Proc. Amer. Math. Soc. 144 (2016), 4723-4731 Request permission
Abstract:
We show that the predual of a JBW$^*$-triple has the weak Banach-Saks property, that is, reflexive subspaces of a JBW$^*$-triple predual are super-reflexive. We also prove that JBW$^*$-triple preduals satisfy the Komlós property (which can be considered an abstract version of the weak law of large numbers). The results rely on two previous papers from which we infer the fact that, like in the classical case of $L^1$, a subspace of a JBW$^*$-triple predual contains $\ell _1$ as soon as it contains uniform copies of $\ell _1^n$.References
- Albert Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91–94. MR 305044, DOI 10.4064/sm-42-1-91-94
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- Bernard Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), no. 2, 357–384. MR 555227, DOI 10.7146/math.scand.a-11818
- B. Beauzamy and J.-T. Lapresté, Modèles étalés des epaces de Banach, Travaux en Cours, Hermann, Paris, 1984.
- Julio Becerra Guerrero and Miguel Martín, The Daugavet property of $C^*$-algebras, $JB^*$-triples, and of their isometric preduals, J. Funct. Anal. 224 (2005), no. 2, 316–337. MR 2146042, DOI 10.1016/j.jfa.2004.11.004
- Alain Belanger and Joe Diestel, A remark on weak convergence in the dual of a $C^\ast$-algebra, Proc. Amer. Math. Soc. 98 (1986), no. 1, 185–186. MR 848901, DOI 10.1090/S0002-9939-1986-0848901-7
- Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 154, Cambridge University Press, Cambridge, 2014. The Vidav-Palmer and Gelfand-Naimark theorems. MR 3242640, DOI 10.1017/CBO9781107337763
- Cho-Ho Chu, Jordan structures in geometry and analysis, Cambridge Tracts in Mathematics, vol. 190, Cambridge University Press, Cambridge, 2012. MR 2885059
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- P. Erdős and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), no. 2, 232–234. MR 430596, DOI 10.1090/S0002-9939-1976-0430596-1
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- Yaakov Friedman and Bernard Russo, Conditional expectation and bicontractive projections on Jordan $C^\ast$-algebras and their generalizations, Math. Z. 194 (1987), no. 2, 227–236. MR 876232, DOI 10.1007/BF01161970
- Gilles Godefroy, Sous-espaces bien disposés de $L^{1}$-applications, Trans. Amer. Math. Soc. 286 (1984), no. 1, 227–249 (French, with English summary). MR 756037, DOI 10.1090/S0002-9947-1984-0756037-1
- U. Haagerup, H. P. Rosenthal, and F. A. Sukochev, Banach embedding properties of non-commutative $L^p$-spaces, Mem. Amer. Math. Soc. 163 (2003), no. 776, vi+68. MR 1963854, DOI 10.1090/memo/0776
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- Hans Jarchow, On weakly compact operators on $C^\ast$-algebras, Math. Ann. 273 (1986), no. 2, 341–343. MR 817887, DOI 10.1007/BF01451412
- W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the geometry of Banach spaces. Vol. I, North-Holland Publishing Co., Amsterdam, 2001. MR 1863688
- S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J., 45:188–193, 1938.
- J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. MR 210177, DOI 10.1007/BF02020976
- Pei-Kee Lin, Köthe-Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2018062, DOI 10.1007/978-0-8176-8188-3
- Antonio M. Peralta and Hermann Pfitzner, Perturbation of $\ell _1$-copies in preduals of $\rm JBW^*$-triples, J. Math. Anal. Appl. 434 (2016), no. 1, 149–170. MR 3404553, DOI 10.1016/j.jmaa.2015.08.032
- Antonio M. Peralta and Hermann Pfitzner, The Kadec-Pełczyński-Rosenthal subsequence splitting lemma for $\rm JBW^*$-triple preduals, Studia Math. 227 (2015), no. 1, 77–95. MR 3359958, DOI 10.4064/sm227-1-5
- Hermann Pfitzner, L-embedded Banach spaces and measure topology, Israel J. Math. 205 (2015), no. 1, 421–451. MR 3314594, DOI 10.1007/s11856-014-1136-6
- Gilles Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de $l^{1}_{n}$, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A991–A994 (French). MR 333673
- Narcisse Randrianantoanina, Non-commutative subsequence principles, Math. Z. 245 (2003), no. 4, 625–644. MR 2020702, DOI 10.1007/s00209-003-0560-9
- Yves Raynaud and Quanhua Xu, On subspaces of non-commutative $L_p$-spaces, J. Funct. Anal. 203 (2003), no. 1, 149–196. MR 1996870, DOI 10.1016/S0022-1236(03)00045-4
- Haskell P. Rosenthal, On subspaces of $L^{p}$, Ann. of Math. (2) 97 (1973), 344–373. MR 312222, DOI 10.2307/1970850
- S. Simons, On the Dunford-Pettis property and Banach spaces that contain $c_0$, Math. Ann. 216 (1975), no. 3, 225–231. MR 402470, DOI 10.1007/BF01430962
- W. Szlenk, Sur les suites faiblement convergentes dans l’espace $L$, Studia Math. 25 (1965), 337–341 (French). MR 201956, DOI 10.4064/sm-25-3-337-341
Additional Information
- Antonio M. Peralta
- Affiliation: Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias 18071, Granada, Spain
- MR Author ID: 666723
- ORCID: 0000-0003-2528-8357
- Email: aperalta@ugr.es
- Hermann Pfitzner
- Affiliation: Laboratoire de mathématiques MAPMO UMR 7349, Université d’Orléans, BP 6759, F-45067 Orléans Cedex 2, France
- MR Author ID: 333993
- Email: hermann.pfitzner@univ-orleans.fr
- Received by editor(s): May 20, 2015
- Published electronically: July 7, 2016
- Additional Notes: The first author was partially supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund project no. MTM2014-58984-P and Junta de Andalucía grant FQM375.
- Communicated by: Thomas Schlumprecht
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 4723-4731
- MSC (2010): Primary 46L05, 46L40
- DOI: https://doi.org/10.1090/proc/13250
- MathSciNet review: 3544524