Lefschetz theorems for tamely ramified coverings
HTML articles powered by AMS MathViewer
- by Hélène Esnault and Lars Kindler
- Proc. Amer. Math. Soc. 144 (2016), 5071-5080
- DOI: https://doi.org/10.1090/proc/13151
- Published electronically: June 3, 2016
Abstract:
As is well known, the Lefschetz theorems for the étale fundamental group of quasi-projective varieties do not hold. We fill a small gap in the literature showing they do for the tame fundamental group. Let $X$ be a regular projective variety over a field $k$, and let $D\hookrightarrow X$ be a strict normal crossings divisor. Then, if $Y$ is an ample regular hyperplane intersecting $D$ transversally, the restriction functor from tame étale coverings of $X\setminus D$ to those of $Y\setminus D\cap Y$ is an equivalence if dimension $X \ge 3$, and is fully faithful if dimension $X=2$. The method is dictated by work of Grothendieck and Murre (1971). They showed that one can lift tame coverings from $Y\setminus D\cap Y$ to the complement of $D\cap Y$ in the formal completion of $X$ along $Y$. One has then to further lift to $X\setminus D$.References
- Vladimir Drinfeld, On a conjecture of Deligne, Mosc. Math. J. 12 (2012), no. 3, 515–542, 668 (English, with English and Russian summaries). MR 3024821, DOI 10.17323/1609-4514-2012-12-3-515-542
- Hélène Esnault and Moritz Kerz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam. 37 (2012), no. 4, 531–562. MR 3058662
- D. Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 1–31. MR 382271
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- —, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas., Publ. Math. IHES 32 (1967).
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 4, Société Mathématique de France, Paris, 2005 (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962; Augmenté d’un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud]; With a preface and edited by Yves Laszlo; Revised reprint of the 1968 French original. MR 2171939
- Alexander Grothendieck and Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin-New York, 1971. MR 0316453
- Shinya Harada and Toshiro Hiranouchi, Smallness of fundamental groups for arithmetic schemes, J. Number Theory 129 (2009), no. 11, 2702–2712. MR 2549526, DOI 10.1016/j.jnt.2009.03.010
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Kiran S. Kedlaya, Good formal structures for flat meromorphic connections, II: excellent schemes, J. Amer. Math. Soc. 24 (2011), no. 1, 183–229. MR 2726603, DOI 10.1090/S0894-0347-2010-00681-9
- Moritz Kerz and Shuji Saito, Lefschetz theorem for abelian fundamental group with modulus, Algebra Number Theory 8 (2014), no. 3, 689–701. MR 3218806, DOI 10.2140/ant.2014.8.689
- Moritz Kerz and Alexander Schmidt, On different notions of tameness in arithmetic geometry, Math. Ann. 346 (2010), no. 3, 641–668. MR 2578565, DOI 10.1007/s00208-009-0409-6
- Lars Kindler, Regular singular stratified bundles and tame ramification, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6461–6485. MR 3356944, DOI 10.1090/S0002-9947-2014-06143-6
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Michael Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), no. 2, 488–522. MR 2435647, DOI 10.1016/j.aim.2008.05.006
- Paolo Valabrega, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ. 15 (1975), no. 2, 387–395. MR 376677, DOI 10.1215/kjm/1250523070
Bibliographic Information
- Hélène Esnault
- Affiliation: FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
- MR Author ID: 64210
- Email: esnault@math.fu-berlin.de
- Lars Kindler
- Affiliation: Department of Mathematics, Harvard University, Science Center, One Oxford Street, Cambridge, Massachusetts 02138
- MR Author ID: 1045532
- Email: kindler@math.harvard.edu
- Received by editor(s): October 3, 2015
- Received by editor(s) in revised form: February 2, 2016
- Published electronically: June 3, 2016
- Additional Notes: The first author was supported by the Einstein Program.
The second author was supported by a research scholarship of the DFG (“Deutsche Forschungsgemeinschaft”). - Communicated by: Romyar T. Sharifi
- © Copyright 2016 H. Esnault and L. Kindler
- Journal: Proc. Amer. Math. Soc. 144 (2016), 5071-5080
- MSC (2010): Primary 14E20, 14E22
- DOI: https://doi.org/10.1090/proc/13151
- MathSciNet review: 3556253