Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators
HTML articles powered by AMS MathViewer
- by N. Braun Rodrigues, G. Chinni, P. D. Cordaro and M. R. Jahnke
- Proc. Amer. Math. Soc. 144 (2016), 5159-5170
- DOI: https://doi.org/10.1090/proc/13178
- Published electronically: May 31, 2016
- PDF | Request permission
Abstract:
In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the $N$-dimensional torus introduced by Cordaro and Himonas and prove that if $P$ is any operator in this class, then a perturbation of $P$ by an analytic pseudodifferential operator with degree smaller than the subelliptic index of $P$ remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.References
- Angela A. Albanese and David Jornet, Global regularity in ultradifferentiable classes, Ann. Mat. Pura Appl. (4) 193 (2014), no. 2, 369–387. MR 3180923, DOI 10.1007/s10231-012-0279-5
- P. Bolley, J. Camus, and C. Mattera, Analyticité microlocale et itères d’opérateurs, Seminairie Goulaouic-Schwartz, Ecole Polytechnique France (1978-79).
- P. Bolley, J. Camus, and L. Rodino, Hypoellipticité analytique-Gevrey et itérés d’opérateurs, Rend. Sem. Mat. Univ. Politec. Torino 45 (1987), no. 3, 1–61 (1989) (French). MR 1037999
- Michael Christ, Global analytic hypoellipticity in the presence of symmetry, Math. Res. Lett. 1 (1994), no. 5, 559–563. MR 1295550, DOI 10.4310/MRL.1994.v1.n5.a4
- Paulo D. Cordaro and A. Alexandrou Himonas, Global analytic hypoellipticity of a class of degenerate elliptic operators on the torus, Math. Res. Lett. 1 (1994), no. 4, 501–510. MR 1302393, DOI 10.4310/MRL.1994.v1.n4.a10
- Paulo D. Cordaro and A. Alexandrou Himonas, Global analytic regularity for sums of squares of vector fields, Trans. Amer. Math. Soc. 350 (1998), no. 12, 4993–5001. MR 1433115, DOI 10.1090/S0002-9947-98-01987-4
- Aparajita Dasgupta and Michael Ruzhansky, Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces, Bull. Sci. Math. 138 (2014), no. 6, 756–782. MR 3251455, DOI 10.1016/j.bulsci.2013.12.001
- J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431, DOI 10.1007/978-3-642-56936-4
- A. Alexandrou Himonas and Gerson Petronilho, On $C^\infty$ and Gevrey regularity of sublaplacians, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4809–4820. MR 2231873, DOI 10.1090/S0002-9947-06-03819-0
- A. Alexandrou Himonas and Gerson Petronilho, On Gevrey regularity of globally $C^\infty$ hypoelliptic operators, J. Differential Equations 207 (2004), no. 2, 267–284. MR 2102665, DOI 10.1016/j.jde.2004.07.023
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR 781537
- Takeshi Kotake and Mudumbai S. Narasimhan, Regularity theorems for fractional powers of a linear elliptic operator, Bull. Soc. Math. France 90 (1962), 449–471. MR 149329
- Kil Hyun Kwon, Concatenations applied to analytic hypoellipticity of operators with double characteristics, Trans. Amer. Math. Soc. 283 (1984), no. 2, 753–763. MR 737898, DOI 10.1090/S0002-9947-1984-0737898-9
- Alberto Parmeggiani, A remark on the stability of $C^\infty$-hypoellipticity under lower-order perturbations, J. Pseudo-Differ. Oper. Appl. 6 (2015), no. 2, 227–235. MR 3351885, DOI 10.1007/s11868-015-0118-8
- Guy Métivier, Propriété des itérés et ellipticité, Comm. Partial Differential Equations 3 (1978), no. 9, 827–876 (French). MR 504629, DOI 10.1080/03605307808820078
- Gerson Petronilho, On Gevrey solvability and regularity, Math. Nachr. 282 (2009), no. 3, 470–481. MR 2503164, DOI 10.1002/mana.200810748
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), no. 2, 209–216. MR 674401, DOI 10.1007/BF01399501
Bibliographic Information
- N. Braun Rodrigues
- Affiliation: Universidade de São Paulo, IME-USP, São Paulo, SP, Brazil
- Email: braun@ime.usp.br
- G. Chinni
- Affiliation: Universidade de São Paulo, IME-USP, São Paulo, SP, Brazil
- MR Author ID: 872619
- Email: gregorio.chinni@gmail.com
- P. D. Cordaro
- Affiliation: Universidade de São Paulo, IME-USP, São Paulo, SP, Brazil
- MR Author ID: 51555
- Email: cordaro@ime.usp.br
- M. R. Jahnke
- Affiliation: Universidade de São Paulo, IME-USP, São Paulo, SP, Brazil
- Email: jahnke@ime.usp.br
- Received by editor(s): October 30, 2015
- Received by editor(s) in revised form: January 29, 2016
- Published electronically: May 31, 2016
- Additional Notes: The first and fourth authors were supported by doctoral fellowships from CNPq
The second author was supported by a posdoctoral fellowship from Fapesp
The third author was partially supported by CNPq and Fapesp - Communicated by: Mei-Chi Shaw
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 5159-5170
- MSC (2010): Primary 35H10, 35H05, 35N15
- DOI: https://doi.org/10.1090/proc/13178
- MathSciNet review: 3556261