Strict singularity of a Volterra-type integral operator on $H^p$
HTML articles powered by AMS MathViewer
- by Santeri Miihkinen
- Proc. Amer. Math. Soc. 145 (2017), 165-175
- DOI: https://doi.org/10.1090/proc/13180
- Published electronically: June 10, 2016
- PDF | Request permission
Abstract:
We prove that the Volterra-type integral operator \[ T_gf(z) = \int _0^z f(\zeta )g’(\zeta )d\zeta , \quad z \in \mathbb {D},\] defined on the Hardy spaces $H^p$ fixes an isomorphic copy of $\ell ^p$ if it is not compact. In particular, the strict singularity of $T_g$ coincides with its compactness on spaces $H^p.$ As a consequence, we obtain a new proof for the equivalence of the compactness and the weak compactness of $T_g$ on $H^1$. Moreover, a non-compact $T_g$ acting on the space $BMOA$ fixes an isomorphic copy of $c_0.$References
- Alexandru Aleman, A class of integral operators on spaces of analytic functions, Topics in complex analysis and operator theory, Univ. Málaga, Málaga, 2007, pp. 3–30. MR 2394654
- Alexandru Aleman and Joseph A. Cima, An integral operator on $H^p$ and Hardy’s inequality, J. Anal. Math. 85 (2001), 157–176. MR 1869606, DOI 10.1007/BF02788078
- Alexandru Aleman and Aristomenis G. Siskakis, An integral operator on $H^p$, Complex Variables Theory Appl. 28 (1995), no. 2, 149–158. MR 1700079, DOI 10.1080/17476939508814844
- Alexandru Aleman and Aristomenis G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337–356. MR 1481594, DOI 10.1512/iumj.1997.46.1373
- José Bonet, PawełDomański, and Mikael Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139–148. MR 1692002, DOI 10.4153/CMB-1999-016-x
- Daniel Girela, Analytic functions of bounded mean oscillation, Complex function spaces (Mekrijärvi, 1999) Univ. Joensuu Dept. Math. Rep. Ser., vol. 4, Univ. Joensuu, Joensuu, 2001, pp. 61–170. MR 1820090
- Francisco L. Hernández, Evgeny M. Semenov, and Pedro Tradacete, Strictly singular operators on $L_p$ spaces and interpolation, Proc. Amer. Math. Soc. 138 (2010), no. 2, 675–686. MR 2557184, DOI 10.1090/S0002-9939-09-10089-8
- N. J. Kalton, N. T. Peck, and James W. Roberts, An $F$-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777, DOI 10.1017/CBO9780511662447
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- Jussi Laitila, Santeri Miihkinen, and Pekka J. Nieminen, Essential norms and weak compactness of integration operators, Arch. Math. (Basel) 97 (2011), no. 1, 39–48. MR 2820586, DOI 10.1007/s00013-011-0272-z
- J. Laitila, P. J. Nieminen, E. Saksman, and H.-O. Tylli, Structural rigidity of composition operators on ${H}^p$, (forthcoming).
- M. V. Leĭbov, Subspaces of the space VMO, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 51–54 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 536–538. MR 865789, DOI 10.1007/BF01095622
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602 (German). MR 454017, DOI 10.1007/BF02567392
- Aristomenis G. Siskakis, Volterra operators on spaces of analytic functions—a survey, Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 51–68. MR 2290748
- Aristomenis G. Siskakis and Ruhan Zhao, A Volterra type operator on spaces of analytic functions, Function spaces (Edwardsville, IL, 1998) Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 299–311. MR 1678342, DOI 10.1090/conm/232/03406
- L. Weis, On perturbations of Fredholm operators in $L_{p}(\mu )$-spaces, Proc. Amer. Math. Soc. 67 (1977), no. 2, 287–292. MR 467377, DOI 10.1090/S0002-9939-1977-0467377-X
- P. Wojtaszczyk, The Banach space $H_{1}$, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 1–33. MR 761370, DOI 10.1016/S0304-0208(08)71464-6
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277, DOI 10.1017/CBO9780511608735
- Rikio Yoneda, Integration operators on weighted Bloch spaces, Nihonkai Math. J. 12 (2001), no. 2, 123–133. MR 1869743
Bibliographic Information
- Santeri Miihkinen
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, Box 68, 00014 Helsinki, Finland
- MR Author ID: 945304
- Email: santeri.miihkinen@helsinki.fi
- Received by editor(s): January 20, 2016
- Received by editor(s) in revised form: March 1, 2016
- Published electronically: June 10, 2016
- Additional Notes: This research was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research
- Communicated by: Pamela B. Gorkin
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 165-175
- MSC (2010): Primary 47G10; Secondary 30H10
- DOI: https://doi.org/10.1090/proc/13180
- MathSciNet review: 3565369