Gaussian estimates with best constants for higher-order Schrödinger operators with Kato potentials
HTML articles powered by AMS MathViewer
- by G. Barbatis
- Proc. Amer. Math. Soc. 145 (2017), 191-200
- DOI: https://doi.org/10.1090/proc/13185
- Published electronically: July 6, 2016
- PDF | Request permission
Abstract:
We establish Gaussian estimates on the heat kernel of a higher-order uniformly elliptic Schrödinger operator with variable highest order coefficients and with a Kato class potential. The estimates involve the sharp constant in the Gaussian exponent.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, AMS Chelsea Publishing, Providence, RI, 2010. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr.; Revised edition of the 1965 original. MR 2589244, DOI 10.1090/chel/369
- Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
- Pascal Auscher and Philippe Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 (English, with English and French summaries). MR 1651262
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000. MR 1747675, DOI 10.1007/978-1-4612-1268-3
- G. Barbatis, On the approximation of Finsler metrics on Euclidean domains, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 3, 589–609. MR 1721774, DOI 10.1017/S001309150002054X
- G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Differential Equations 174 (2001), no. 2, 442–463. MR 1846743, DOI 10.1006/jdeq.2000.3940
- G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory 36 (1996), no. 1, 179–198. MR 1417193
- Gerassimos Barbatis and Filippo Gazzola, Higher order linear parabolic equations, Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemp. Math., vol. 594, Amer. Math. Soc., Providence, RI, 2013, pp. 77–97. MR 3155904, DOI 10.1090/conm/594/11775
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), no. 1, 141–169. MR 1346221, DOI 10.1006/jfan.1995.1103
- E. B. Davies, Limits on $L^p$ regularity of self-adjoint elliptic operators, J. Differential Equations 135 (1997), no. 1, 83–102. MR 1434916, DOI 10.1006/jdeq.1996.3219
- E. B. Davies, $L^p$ spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513–546. MR 1458713, DOI 10.1112/S002460939700324X
- E. B. Davies and A. M. Hinz, Kato class potentials for higher order elliptic operators, J. London Math. Soc. (2) 58 (1998), no. 3, 669–678. MR 1678156, DOI 10.1112/S0024610798006565
- Qingquan Deng, Yong Ding, and Xiaohua Yao, Gaussian bounds for higher-order elliptic differential operators with Kato type potentials, J. Funct. Anal. 266 (2014), no. 8, 5377–5397. MR 3177340, DOI 10.1016/j.jfa.2014.02.014
- A. F. M. ter Elst and Derek W. Robinson, High order divergence-form elliptic operators on Lie groups, Bull. Austral. Math. Soc. 55 (1997), no. 2, 335–348. MR 1438852, DOI 10.1017/S0004972700034006
- M. A. Evgrafov and M. M. Postnikov, Asymptotic behavior of Green’s functions for parabolic and elliptic equations with constant coefficients, Math. USSR Sbornik 11 (1970), 1-24
- S. Huang, M. Wang, Q. Zheng, and Z. Duan Z, $L^p$ estimates for fractional Schrödinger operators with Kato class potentials, preprint 2015, arXiv:1511.08041
- Isao Miyadera, On perturbation theory for semi-groups of operators, Tohoku Math. J. (2) 18 (1966), 299–310. MR 209900, DOI 10.2748/tmj/1178243419
- Kyril Tintarev, Short time asymptotics for fundamental solutions of higher order parabolic equations, Comm. Partial Differential Equations 7 (1982), no. 4, 371–391. MR 652814, DOI 10.1080/03605308208820227
- Jürgen Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977), no. 2, 163–171. MR 445335, DOI 10.1007/BF01351602
- Quan Zheng and Xiaohua Yao, Higher-order Kato class potentials for Schrödinger operators, Bull. Lond. Math. Soc. 41 (2009), no. 2, 293–301. MR 2496505, DOI 10.1112/blms/bdn125
Bibliographic Information
- G. Barbatis
- Affiliation: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
- MR Author ID: 602865
- Email: gbarbatis@math.uoa.gr
- Received by editor(s): December 7, 2015
- Received by editor(s) in revised form: March 7, 2016
- Published electronically: July 6, 2016
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 191-200
- MSC (2010): Primary 35K25
- DOI: https://doi.org/10.1090/proc/13185
- MathSciNet review: 3565372