Counting spectrum via the Maslov index for one dimensional $\theta -$periodic Schrödinger operators
HTML articles powered by AMS MathViewer
- by Christopher K. R. T. Jones, Yuri Latushkin and Selim Sukhtaiev
- Proc. Amer. Math. Soc. 145 (2017), 363-377
- DOI: https://doi.org/10.1090/proc/13192
- Published electronically: July 6, 2016
- PDF | Request permission
Abstract:
We study the spectrum of the Schrödinger operators with $n\times n$ matrix valued potentials on a finite interval subject to $\theta -$periodic boundary conditions. For two such operators, corresponding to different values of $\theta$, we compute the difference of their eigenvalue counting functions via the Maslov index of a path of Lagrangian planes. In addition we derive a formula for the derivatives of the eigenvalues with respect to $\theta$ in terms of the Maslov crossing form. Finally, we give a new shorter proof of a recent result relating the Morse and Maslov indices of the Schrödinger operator for a fixed $\theta$.References
- V. I. Arnol′d, Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen. 19 (1985), no. 4, 1–10, 95 (Russian). MR 820079
- F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR 0176141
- Margaret Beck and Simon J. A. Malham, Computing the Maslov index for large systems, Proc. Amer. Math. Soc. 143 (2015), no. 5, 2159–2173. MR 3314123, DOI 10.1090/S0002-9939-2014-12575-5
- Bernhelm Booss-Bavnbek and Kenro Furutani, The Maslov index: a functional analytical definition and the spectral flow formula, Tokyo J. Math. 21 (1998), no. 1, 1–34. MR 1630119, DOI 10.3836/tjm/1270041982
- Raoul Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171–206. MR 90730, DOI 10.1002/cpa.3160090204
- Sylvain E. Cappell, Ronnie Lee, and Edward Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), no. 2, 121–186. MR 1263126, DOI 10.1002/cpa.3160470202
- F. Chardard, F. Dias, and T. J. Bridges, Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients, J. Phys. A 39 (2006), no. 47, 14545–14557. MR 2277067, DOI 10.1088/0305-4470/39/47/002
- Frédéric Chardard, Frédéric Dias, and Thomas J. Bridges, Computing the Maslov index of solitary waves. I. Hamiltonian systems on a four-dimensional phase space, Phys. D 238 (2009), no. 18, 1841–1867. MR 2598511, DOI 10.1016/j.physd.2009.05.008
- Charles Conley and Eduard Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. MR 733717, DOI 10.1002/cpa.3160370204
- G. Cox, C. Jones, Y. Latushkin, and A. Sukhtayev, The Morse and Maslov indices for multidimensional Schrödinger operators with matrix-valued potentials, Trans. Amer. Math. Soc., to appear.
- Graham Cox, Christopher K. R. T. Jones, and Jeremy L. Marzuola, A Morse index theorem for elliptic operators on bounded domains, Comm. Partial Differential Equations 40 (2015), no. 8, 1467–1497. MR 3355500, DOI 10.1080/03605302.2015.1025979
- G. Cox, C. K. R. T. Jones, and J. Marzuola, Manifold decompositions and indices of Schrödinger operators, Preprint, http://arxiv.org/abs/1506.07431.
- Francesca Dalbono and Alessandro Portaluri, Morse-Smale index theorems for elliptic boundary deformation problems, J. Differential Equations 253 (2012), no. 2, 463–480. MR 2921202, DOI 10.1016/j.jde.2012.04.008
- Jian Deng and Christopher Jones, Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1487–1508. MR 2737274, DOI 10.1090/S0002-9947-2010-05129-3
- J. J. Duistermaat, On the Morse index in variational calculus, Advances in Math. 21 (1976), no. 2, 173–195. MR 649277, DOI 10.1016/0001-8708(76)90074-8
- H. I. Dwyer and A. Zettl, Computing eigenvalues of regular Sturm-Liouville problems, Electron. J. Differential Equations (1994), No. 06, approx. 10 pp.}, review= MR 1292109,
- Kenro Furutani, Fredholm-Lagrangian-Grassmannian and the Maslov index, J. Geom. Phys. 51 (2004), no. 3, 269–331. MR 2079414, DOI 10.1016/j.geomphys.2004.04.001
- C. Grudziena and C. K. R. T. Jones, Geometric phase in the Hopf bundle and the stability of non-linear waves, preprint (2015).
- P. Howard and A. Sukhtayev, The Maslov and Morse indices for Schrödinger operators on $[0,1]$, J. Differential Equations 260 (2016), no. 5, 4499–4549. MR 3437596, DOI 10.1016/j.jde.2015.11.020
- Christopher K. R. T. Jones, Yuri Latushkin, and Robert Marangell, The Morse and Maslov indices for matrix Hill’s equations, Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesy’s 60th birthday, Proc. Sympos. Pure Math., vol. 87, Amer. Math. Soc., Providence, RI, 2013, pp. 205–233. MR 3087908, DOI 10.1090/pspum/087/01436
- Y. Latushkin, S. Sukhtaiev, and A. Sukhtayev, The Morse and Maslov indices for Schrödinger operators, J. D’Analyse Math., to appear, http://arxiv.org/abs/1411.1656.
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331
- Alessandro Portaluri and Nils Waterstraat, A Morse-Smale index theorem for indefinite elliptic systems and bifurcation, J. Differential Equations 258 (2015), no. 5, 1715–1748. MR 3295598, DOI 10.1016/j.jde.2014.11.010
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
- Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33. MR 1331677, DOI 10.1112/blms/27.1.1
- S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965), 1049–1055. MR 0182027, DOI 10.1111/j.1467-9876.1965.tb00656.x
Bibliographic Information
- Christopher K. R. T. Jones
- Affiliation: Department of Mathematics, The University of North Carolina, Chapel Hill, North Carolia 27599
- MR Author ID: 95400
- ORCID: 0000-0002-2700-6096
- Email: ckrtj@email.unc.edu
- Yuri Latushkin
- Affiliation: Department of Mathematics, The University of Missouri, Columbia, Missouri 65211
- MR Author ID: 213557
- Email: latushkiny@missouri.edu
- Selim Sukhtaiev
- Affiliation: Department of Mathematics, The University of Missouri, Columbia, Missouri 65211
- Email: sswfd@mail.missouri.edu
- Received by editor(s): October 14, 2015
- Received by editor(s) in revised form: March 9, 2016
- Published electronically: July 6, 2016
- Additional Notes: This work was supported by the NSF grant DMS-1067929, by the Research Board and Research Council of the University of Missouri, and by the Simons Foundation.
- Communicated by: Catherine Sulem
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 363-377
- MSC (2010): Primary 53D12, 34L40; Secondary 37J25, 70H12
- DOI: https://doi.org/10.1090/proc/13192
- MathSciNet review: 3565387