The syzygies of some thickenings of determinantal varieties
HTML articles powered by AMS MathViewer
- by Claudiu Raicu and Jerzy Weyman
- Proc. Amer. Math. Soc. 145 (2017), 49-59
- DOI: https://doi.org/10.1090/proc/13197
- Published electronically: July 12, 2016
- PDF | Request permission
Abstract:
The vector space of $m\times n$ complex matrices ($m\geq n$) admits a natural action of the group $\operatorname {GL}=\operatorname {GL}_m\times \operatorname {GL}_n$ via row and column operations. For positive integers $a,b$, we consider the ideal $I_{a\times b}$ defined as the smallest $\operatorname {GL}$-equivariant ideal containing the $b$-th powers of the $a\times a$ minors of the generic $m\times n$ matrix. We compute the syzygies of the ideals $I_{a\times b}$ for all $a,b$, together with their $\operatorname {GL}$-equivariant structure, generalizing earlier results of Lascoux for the ideals of minors ($b=1$), and of Akin–Buchsbaum–Weyman for the powers of the ideals of maximal minors ($a=n$). Our methods rely on a nice connection between commutative algebra and the representation theory of the superalgebra $\mathfrak {gl}(m|n)$, as well as on our previous calculation of $\operatorname {Ext}$ modules done in the context of describing local cohomology with determinantal support. Our results constitute an important ingredient in the proof by Nagpal–Sam–Snowden of the first non-trivial Noetherianity results for twisted commutative algebras which are not generated in degree one.References
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Resolutions of determinantal ideals: the submaximal minors, Adv. in Math. 39 (1981), no. 1, 1–30. MR 605350, DOI 10.1016/0001-8708(81)90055-4
- Kaan Akin and Jerzy Weyman, Minimal free resolutions of determinantal ideals and irreducible representations of the Lie superalgebra $\textrm {gl}(m|n)$, J. Algebra 197 (1997), no. 2, 559–583. MR 1483781, DOI 10.1006/jabr.1997.7101
- Kaan Akin and Jerzy Weyman, Primary ideals associated to the linear strands of Lascoux’s resolution and syzygies of the corresponding irreducible representations of the Lie superalgebra $\textbf {gl}(m|n)$, J. Algebra 310 (2007), no. 2, 461–490. MR 2308168, DOI 10.1016/j.jalgebra.2003.11.015
- Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak {g}\mathfrak {l}(m|n)$, J. Amer. Math. Soc. 16 (2003), no. 1, 185–231. MR 1937204, DOI 10.1090/S0894-0347-02-00408-3
- C. de Concini, David Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), no. 2, 129–165. MR 558865, DOI 10.1007/BF01392548
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- J. W. B. Hughes, R. C. King, and J. Van der Jeugt, On the composition factors of Kac modules for the Lie superalgebras $\textrm {sl}(m/n)$, J. Math. Phys. 33 (1992), no. 2, 470–491. MR 1145343, DOI 10.1063/1.529782
- Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- Alain Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237 (French). MR 520233, DOI 10.1016/0001-8708(78)90037-3
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Rohit Nagpal, Steven V. Sam, and Andrew Snowden, Noetherianity of some degree two twisted commutative algebras, Selecta Math. (N.S.) 22 (2016), no. 2, 913–937. MR 3477338, DOI 10.1007/s00029-015-0205-y
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in generic determinantal ideals, Algebra Number Theory 8 (2014), no. 5, 1231–1257. MR 3263142, DOI 10.2140/ant.2014.8.1231
- Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra ${\mathfrak {g}}{\mathfrak {l}}(m|n)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607–651. MR 1443186, DOI 10.1007/PL00001385
- Andrew Snowden, Syzygies of Segre embeddings and $\Delta$-modules, Duke Math. J. 162 (2013), no. 2, 225–277. MR 3018955, DOI 10.1215/00127094-1962767
- Yucai Su, J. W. B. Hughes, and R. C. King, Primitive vectors of Kac-modules of the Lie superalgebras $\textrm {sl}(m/n)$, J. Math. Phys. 41 (2000), no. 7, 5064–5087. MR 1765833, DOI 10.1063/1.533392
- Yucai Su, Composition factors of Kac modules for the general linear Lie superalgebras, Math. Z. 252 (2006), no. 4, 731–754. MR 2206623, DOI 10.1007/s00209-005-0874-x
- Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR 1988690, DOI 10.1017/CBO9780511546556
Bibliographic Information
- Claudiu Raicu
- Affiliation: Department of Mathematics, 255 Hurley Hall, University of Notre Dame, Notre Dame, Indiana 46556 – and – Institute of Mathematics “Simion Stoilow” of the Romanian Academy
- MR Author ID: 909516
- Email: craicu@nd.edu
- Jerzy Weyman
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- MR Author ID: 182230
- ORCID: 0000-0003-1923-0060
- Email: jerzy.weyman@uconn.edu
- Received by editor(s): January 27, 2016
- Received by editor(s) in revised form: March 15, 2016
- Published electronically: July 12, 2016
- Communicated by: Irena Peeva
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 49-59
- MSC (2010): Primary 13D02, 14M12, 17B10
- DOI: https://doi.org/10.1090/proc/13197
- MathSciNet review: 3565359