Beltrami equations with coefficient in the fractional Sobolev space $W^{\theta , \frac 2{\theta }}$
HTML articles powered by AMS MathViewer
- by Antonio L. Baisón, Albert Clop and Joan Orobitg
- Proc. Amer. Math. Soc. 145 (2017), 139-149
- DOI: https://doi.org/10.1090/proc/13204
- Published electronically: June 30, 2016
- PDF | Request permission
Abstract:
In this paper, we look at quasiconformal solutions $\phi :\mathbb {C}\to \mathbb {C}$ of Beltrami equations \[ \partial _{\overline {z}} \phi (z)=\mu (z) \partial _z \phi (z), \] where $\mu \in L^\infty (\mathbb {C})$ is compactly supported on $\mathbb {D}$, and $\|\mu \|_\infty <1$ and belongs to the fractional Sobolev space $W^{\alpha , \frac 2\alpha }(\mathbb {C})$. Our main result states that \[ \log \partial _z\phi \in W^{\alpha , \frac 2\alpha }(\mathbb {C})\] whenever $\alpha \ge \frac 12$. Our method relies on an $n$-dimensional result, which asserts the compactness of the commutator \[ [b,(-\Delta )^\frac {\beta }{2}]:L^\frac {np}{n-\beta p}(\mathbb {R}^n)\to L^p(\mathbb {R}^n)\] between the fractional laplacian $(-\Delta )^\frac \beta 2$ and any symbol $b\in W^{\beta ,\frac {n}\beta }(\mathbb {R}^n)$, provided that $1<p<\frac {n}{\beta }$.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- Kari Astala, Tadeusz Iwaniec, István Prause, and Eero Saksman, Bilipschitz and quasiconformal rotation, stretching and multifractal spectra, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 113–154. MR 3349832, DOI 10.1007/s10240-014-0065-6
- Albert Clop and Victor Cruz, Weighted estimates for Beltrami equations, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 91–113. MR 3076800, DOI 10.5186/aasfm.2013.3818
- A. Clop, D. Faraco, J. Mateu, J. Orobitg, and X. Zhong, Beltrami equations with coefficient in the Sobolev space $W^{1,p}$, Publ. Mat. 53 (2009), no. 1, 197–230. MR 2474121, DOI 10.5565/PUBLMAT_{5}3109_{0}9
- D. H. Hamilton, BMO and Teichmüller space, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 213–224. MR 1024426, DOI 10.5186/aasfm.1989.1409
- Tadeusz Iwaniec, $L^p$-theory of quasiregular mappings, Quasiconformal space mappings, Lecture Notes in Math., vol. 1508, Springer, Berlin, 1992, pp. 39–64. MR 1187088, DOI 10.1007/BFb0094237
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, DOI 10.1002/cpa.3160460405
- A. Koski, Singular integrals and Beltrami type operators in the plane and beyond. Master Thesis, Department of Mathematics, University of Helsinki, 2011.
- Steven G. Krantz and Song-Ying Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications. II, J. Math. Anal. Appl. 258 (2001), no. 2, 642–657. MR 1835564, DOI 10.1006/jmaa.2000.7403
- H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260–276. MR 361067, DOI 10.1007/BF02566734
- Hans Martin Reimann and Thomas Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics, Vol. 487, Springer-Verlag, Berlin-New York, 1975 (German). MR 0511997
- Thomas Runst and Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996. MR 1419319, DOI 10.1515/9783110812411
- Armin Schikorra, Tien-Tsan Shieh, and Daniel Spector, $L^p$ theory for fractional gradient PDE with $VMO$ coefficients, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 4, 433–443. MR 3420498, DOI 10.4171/RLM/714
Bibliographic Information
- Antonio L. Baisón
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193- Bellaterra (Catalonia)
- Email: baison@mat.uab.cat
- Albert Clop
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193- Bellaterra (Catalonia)
- Email: albertcp@mat.uab.cat
- Joan Orobitg
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193- Bellaterra (Catalonia)
- Email: orobitg@mat.uab.cat
- Received by editor(s): July 21, 2015
- Received by editor(s) in revised form: February 29, 2016
- Published electronically: June 30, 2016
- Communicated by: Jeremy Tyson
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 139-149
- MSC (2010): Primary 30C62, 35J46, 42B20, 42B37
- DOI: https://doi.org/10.1090/proc/13204
- MathSciNet review: 3565367