Quantitative and qualitative cohomological properties for non-Kähler manifolds
HTML articles powered by AMS MathViewer
- by Daniele Angella and Nicoletta Tardini
- Proc. Amer. Math. Soc. 145 (2017), 273-285
- DOI: https://doi.org/10.1090/proc/13209
- Published electronically: July 12, 2016
- PDF | Request permission
Abstract:
We introduce a “qualitative property” for Bott-Chern cohomology of complex non-Kähler manifolds, which is motivated in view of the study of the algebraic structure of Bott-Chern cohomology. We prove that such a property characterizes the validity of the $\partial \overline \partial$-Lemma. This follows from a quantitative study of Bott-Chern cohomology. In this context, we also prove a new bound on the dimension of the Bott-Chern cohomology in terms of the Hodge numbers. We also give a generalization of this upper bound, with applications to symplectic cohomologies.References
- A. Aeppli, On the cohomology structure of Stein manifolds, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 58–70. MR 0221536
- Daniele Angella, The cohomologies of the Iwasawa manifold and of its small deformations, J. Geom. Anal. 23 (2013), no. 3, 1355–1378. MR 3078358, DOI 10.1007/s12220-011-9291-z
- D. Angella, On the Bott-Chern and Aeppli cohomology, in Bielefeld Geometry & Topology Days, https://www.math.uni-bielefeld.de/sfb701/suppls/ssfb15001.pdf, 2015, arXiv:1507.07112.
- Daniele Angella, Georges Dloussky, and Adriano Tomassini, On Bott-Chern cohomology of compact complex surfaces, Ann. Mat. Pura Appl. (4) 195 (2016), no. 1, 199–217. MR 3453598, DOI 10.1007/s10231-014-0458-7
- D. Angella, H. Kasuya, Bott-Chern cohomology of solvmanifolds, arXiv:1212.5708.
- Daniele Angella and Adriano Tomassini, On the $\partial \overline {\partial }$-lemma and Bott-Chern cohomology, Invent. Math. 192 (2013), no. 1, 71–81. MR 3032326, DOI 10.1007/s00222-012-0406-3
- Daniele Angella and Adriano Tomassini, Inequalities à la Frölicher and cohomological decompositions, J. Noncommut. Geom. 9 (2015), no. 2, 505–542. MR 3359019, DOI 10.4171/JNCG/199
- Daniele Angella and Adriano Tomassini, On Bott-Chern cohomology and formality, J. Geom. Phys. 93 (2015), 52–61. MR 3340173, DOI 10.1016/j.geomphys.2015.03.004
- Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 185607, DOI 10.1007/BF02391818
- Jean-Luc Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. MR 950556
- G. R. Cavalcanti, New aspects of the ddc-lemma, Oxford University D. Phil thesis, arXiv:math/0501406.
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- Alfred Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641–644. MR 73262, DOI 10.1073/pnas.41.9.641
- Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281–308. MR 2013140, DOI 10.1093/qjmath/54.3.281
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 115189, DOI 10.2307/1969879
- D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, $A$-infinity structure on Ext-algebras, J. Pure Appl. Algebra 213 (2009), no. 11, 2017–2037. MR 2533303, DOI 10.1016/j.jpaa.2009.02.006
- Joseph Neisendorfer and Laurence Taylor, Dolbeault homotopy theory, Trans. Amer. Math. Soc. 245 (1978), 183–210. MR 511405, DOI 10.1090/S0002-9947-1978-0511405-5
- D. Popovici, Volume and Self-Intersection of Differences of Two Nef Classes, arXiv:1505.03457.
- M. Schweitzer, Autour de la cohomologie de Bott-Chern, Prépublication de l’Institut Fourier no. 703 (2007), arXiv:0709.3528.
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- N. Tardini and A. Tomassini, On geometric Bott-Chern formality and deformations, to appear in Annali di Matematica Pura ed Applicata, DOI 10.1007/s10231-016-0575-6. arXiv:1502.03706.
- Valentino Tosatti and Ben Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187–1195. MR 2669712, DOI 10.1090/S0894-0347-2010-00673-X
- Li-Sheng Tseng and Shing-Tung Yau, Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom. 91 (2012), no. 3, 383–416. MR 2981843
- Li-Sheng Tseng and Shing-Tung Yau, Cohomology and Hodge theory on symplectic manifolds: II, J. Differential Geom. 91 (2012), no. 3, 417–443. MR 2981844
- J. Varouchas, Propriétés cohomologiques d’une classe de variétés analytiques complexes compactes, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 233–243 (French). MR 874775, DOI 10.1007/BFb0077057
Bibliographic Information
- Daniele Angella
- Affiliation: Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy
- Email: daniele.angella@gmail.com, daniele.angella@unifi.it
- Nicoletta Tardini
- Affiliation: Dipartimento di Matematica, Università di Pisa, largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- Email: tardini@mail.dm.unipi.it
- Received by editor(s): December 19, 2015
- Received by editor(s) in revised form: March 18, 2016
- Published electronically: July 12, 2016
- Additional Notes: During the preparation of this work, the first author was also granted by a Junior Visiting Position at Centro di Ricerca “Ennio de Giorgi” in Pisa. The first author was supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, by SNS GR14 grant “Geometry of non-Kähler manifolds”, by SIR2014 project RBSI14DYEB “Analytic aspects in complex and hypercomplex geometry”, and by GNSAGA of INdAM. The second author was supported by GNSAGA of INdAM
- Communicated by: Franc Forstneric
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 273-285
- MSC (2010): Primary 32Q99, 32C35
- DOI: https://doi.org/10.1090/proc/13209
- MathSciNet review: 3565379
Dedicated: Dedicated to the memory of Professor Pierre Dolbeault