Torsion points on theta divisors
HTML articles powered by AMS MathViewer
- by Robert Auffarth, Gian Pietro Pirola and Riccardo Salvati Manni
- Proc. Amer. Math. Soc. 145 (2017), 89-99
- DOI: https://doi.org/10.1090/proc/13230
- Published electronically: July 25, 2016
- PDF | Request permission
Abstract:
Using the irreducibility of a natural irreducible representation of the theta group of an ample line bundle on an abelian variety, we derive a bound for the number of $n$-torsion points that lie on a given theta divisor. We present also two alternate approaches to attacking the case $n=2$.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- F. Dalla Piazza, A. Fiorentino, S. Grushevsky, S. Perna, and R. Salvati Manni, Vector-valued modular forms and the Gauss map. arXiv:1505.06370
- John Fay, On the Riemann-Jacobi formula, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 5 (1979), 61–73. MR 568803
- Eberhard Freitag and Riccardo Salvati Manni, Modular forms for the even modular lattice of signature $(2,10)$, J. Algebraic Geom. 16 (2007), no. 4, 753–791. MR 2357689, DOI 10.1090/S1056-3911-07-00460-2
- Bert van Geemen, Schottky-Jung relations and vectorbundles on hyperelliptic curves, Math. Ann. 281 (1988), no. 3, 431–449. MR 954151, DOI 10.1007/BF01457155
- Bert van Geemen, Some equations for the universal Kummer variety, Trans. Amer. Math. Soc. 368 (2016), no. 1, 209–225. MR 3413861, DOI 10.1090/tran/6309
- Jun-ichi Igusa, Theta functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972. MR 0325625
- George R. Kempf, Equations of Kummer varieties, Amer. J. Math. 114 (1992), no. 1, 229–232. MR 1147723, DOI 10.2307/2374743
- George R. Kempf, Complex abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin, 1991. MR 1109495, DOI 10.1007/978-3-642-76079-2
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Tata lectures on theta. III, Progress in Mathematics, vol. 97, Birkhäuser Boston, Inc., Boston, MA, 1991. With the collaboration of Madhav Nori and Peter Norman. MR 1116553, DOI 10.1007/978-0-8176-4579-3
- Valeria Ornella Marcucci and Gian Pietro Pirola, Points of order two on theta divisors, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 23 (2012), no. 3, 319–323. MR 2960840, DOI 10.4171/RLM/630
- Riccardo Salvati Manni, Modular varieties with level $2$ theta structure, Amer. J. Math. 116 (1994), no. 6, 1489–1511. MR 1305875, DOI 10.2307/2375056
Bibliographic Information
- Robert Auffarth
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- MR Author ID: 1152148
- ORCID: 0000-0001-7243-0315
- Email: rfauffar@mat.puc.cl
- Gian Pietro Pirola
- Affiliation: Dipartimento di Matematica, Università di Pavia, 27100 Pavia, Italy
- MR Author ID: 139965
- Email: gianpietro.pirola@unipv.it
- Riccardo Salvati Manni
- Affiliation: Dipartimento di Matematica “Guido Castelnuovo”, Università di Roma “La Sapienza”, Rome, Italy
- MR Author ID: 189741
- Email: salvati@mat.uniroma1.it
- Received by editor(s): March 23, 2016
- Published electronically: July 25, 2016
- Additional Notes: The authors were partially supported by Fondecyt Grant 3150171, CONICYT PIA ACT1415, Prin 2012 “Moduli Spaces and Lie Theory” and Inadm Gnsaga
- Communicated by: Lev Borisov
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 89-99
- MSC (2010): Primary 14K25; Secondary 32G20
- DOI: https://doi.org/10.1090/proc/13230
- MathSciNet review: 3565362