On the $Q$-curvature problem on $\mathbb {S}^3$
HTML articles powered by AMS MathViewer
- by Ruilun Cai and Sanjiban Santra
- Proc. Amer. Math. Soc. 145 (2017), 119-133
- DOI: https://doi.org/10.1090/proc/13271
- Published electronically: August 29, 2016
- PDF | Request permission
Abstract:
Let $P_{\mathbb {S}^3}=\Delta _0^2+ \frac {1}{2}\Delta _0- \frac {15}{16}$ denote the Panietz operator on the standard sphere $\mathbb {S}^3$. In this paper, we study the following fourth order elliptic equation with a nonlinear term of negative power type: \[ P_{\mathbb {S}^3} u = -\frac {1}{2}Qu^{-7} \mbox { on } \mathbb {S}^3. \] Here $Q$ is a prescribed smooth function on $\mathbb {S}^3$ which is assumed to be a smooth bounded positive function. We prove the existence of positive solutions to the equation under a non-degeneracy assumption on $Q$.References
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Jun Ai, Kai-Seng Chou, and Juncheng Wei, Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations 13 (2001), no. 3, 311–337. MR 1865001, DOI 10.1007/s005260000075
- Thomas P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), no. 2, 293–345. MR 832360, DOI 10.7146/math.scand.a-12120
- Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math. 159 (1987), no. 3-4, 215–259. MR 908146, DOI 10.1007/BF02392560
- Sun-Yung A. Chang and Paul C. Yang, Conformal deformation of metrics on $S^2$, J. Differential Geom. 27 (1988), no. 2, 259–296. MR 925123
- Sun-Yung A. Chang and Paul C. Yang, Fourth order equations in conformal geometry, Global analysis and harmonic analysis (Marseille-Luminy, 1999) Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 155–165 (English, with English and French summaries). MR 1822359
- Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang, The scalar curvature equation on $2$- and $3$-spheres, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 205–229. MR 1261723, DOI 10.1007/BF01191617
- Sun-Yung A. Chang and Paul C. Yang, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J. 64 (1991), no. 1, 27–69. MR 1131392, DOI 10.1215/S0012-7094-91-06402-1
- Y. Choi, X. Xu, Classification of solutions of some nonlinear elliptic equations. J. Differential Equations 246 (2009), no. 3, 216–234.
- Zindine Djadli and Andrea Malchiodi, Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. (2) 168 (2008), no. 3, 813–858. MR 2456884, DOI 10.4007/annals.2008.168.813
- Zindine Djadli, Andrea Malchiodi, and Mohameden Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere. I. A perturbation result, Commun. Contemp. Math. 4 (2002), no. 3, 375–408. MR 1918751, DOI 10.1142/S0219199702000695
- Zindine Djadli, Emmanuel Hebey, and Michel Ledoux, Paneitz-type operators and applications, Duke Math. J. 104 (2000), no. 1, 129–169. MR 1769728, DOI 10.1215/S0012-7094-00-10416-4
- Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. MR 2667016, DOI 10.1007/978-3-642-12245-3
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Fengbo Hang and Paul C. Yang, The Sobolev inequality for Paneitz operator on three manifolds, Calc. Var. Partial Differential Equations 21 (2004), no. 1, 57–83. MR 2078747, DOI 10.1007/s00526-003-0247-4
- Emmanuel Hebey and Frédéric Robert, Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations 13 (2001), no. 4, 491–517. MR 1867939, DOI 10.1007/s005260100084
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math. (2) 99 (1974), 14–47. MR 343205, DOI 10.2307/1971012
- Yan Yan Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180. MR 2055032, DOI 10.4171/jems/6
- Stephen M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 036, 3. MR 2393291, DOI 10.3842/SIGMA.2008.036
- Juncheng Wei and Xingwang Xu, Prescribing $Q$-curvature problem on $\mathbf S^n$, J. Funct. Anal. 257 (2009), no. 7, 1995–2023. MR 2548028, DOI 10.1016/j.jfa.2009.06.024
- Juncheng Wei and Xingwang Xu, On conformal deformations of metrics on $S^n$, J. Funct. Anal. 157 (1998), no. 1, 292–325. MR 1637945, DOI 10.1006/jfan.1998.3271
- Xingwang Xu and Paul C. Yang, On a fourth order equation in 3-D, ESAIM Control Optim. Calc. Var. 8 (2002), 1029–1042. A tribute to J. L. Lions. MR 1932985, DOI 10.1051/cocv:2002023
- Xingwang Xu, Exact solutions of nonlinear conformally invariant integral equations in $\mathbf R^3$, Adv. Math. 194 (2005), no. 2, 485–503. MR 2139922, DOI 10.1016/j.aim.2004.07.004
- Paul Yang and Meijun Zhu, On the Paneitz energy on standard three sphere, ESAIM Control Optim. Calc. Var. 10 (2004), no. 2, 211–223. MR 2083484, DOI 10.1051/cocv:2004002
Bibliographic Information
- Ruilun Cai
- Affiliation: DBS Bank, Marina Bay Financial Centre Tower 3, 12 Marina Boulevard, 018982 Singapore
- Email: ruiluncai@dbs.com
- Sanjiban Santra
- Affiliation: Department of Basic Mathematics, Centro de Investigacióne en Mathematicás, Guanajuato, México
- MR Author ID: 774625
- Email: sanjiban@cimat.mx
- Received by editor(s): February 27, 2016
- Published electronically: August 29, 2016
- Additional Notes: The second author acknowledges funding from LMAP UMR CNRS 5142, Université Pau et des Pays de l’Adour.
- Communicated by: Yingfei Yi
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 119-133
- MSC (2010): Primary 35G20, 35A01, 53C21
- DOI: https://doi.org/10.1090/proc/13271
- MathSciNet review: 3565365