Relations on $\overline {\mathcal {M}}_{g,n}$ via orbifold stable maps
HTML articles powered by AMS MathViewer
- by Emily Clader
- Proc. Amer. Math. Soc. 145 (2017), 11-21
- DOI: https://doi.org/10.1090/proc/13344
- Published electronically: September 15, 2016
- PDF | Request permission
Abstract:
Using the equivariant virtual cycle of the moduli space of stable maps to $[\mathbb {C}/\mathbb {Z}_r]$, or equivalently, the vanishing of high-degree Chern classes of a certain vector bundle over the moduli space of stable maps to $B\mathbb {Z}_r$, we derive relations in the Chow ring of $\overline {\mathcal {M}}_{g,n}(B\mathbb {Z}_r,0)$. These push forward to yield tautological relations on $\overline {\mathcal {M}} _{g,n}$.References
- Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27–75. MR 1862797, DOI 10.1090/S0894-0347-01-00380-0
- R. Cavalieri, Hurwitz theory and the double ramification cycle, arXiv: 1410.8550.
- Alessandro Chiodo, Stable twisted curves and their $r$-spin structures, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1635–1689 (English, with English and French summaries). MR 2445829
- Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and $r$th roots, Compos. Math. 144 (2008), no. 6, 1461–1496. MR 2474317, DOI 10.1112/S0010437X08003709
- A. Chiodo and G. Farkas, Singularities of the moduli space of level curves, J. Eur. Math. Soc., to appear.
- Alessandro Chiodo and Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), no. 1, 117–165. MR 2672282, DOI 10.1007/s00222-010-0260-0
- A. Chiodo and D. Zvonkine, Twisted $r$-spin potential and Givental’s quantization, Adv. Theor. Math. Phys. 13 (2009), no. 5, 1335–1369. MR 2672465
- E. Clader and F. Janda, Pixton’s double ramification cycle relations, arXiv:1601.02871.
- Tom Coates and Alexander Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), no. 1, 15–53. MR 2276766, DOI 10.4007/annals.2007.165.15
- Carel Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 93–109. MR 1714822, DOI 10.1017/CBO9780511721540.006
- Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
- C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13–49. MR 2120989, DOI 10.4171/JEMS/20
- Huijun Fan, Tyler Jarvis, and Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), no. 1, 1–106. MR 3043578, DOI 10.4007/annals.2013.178.1.1
- E. Getzler, Topological recursion relations in genus $2$, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 73–106. MR 1672112
- E. Getzler, Intersection theory on $\overline {\scr M}_{1,4}$ and elliptic Gromov-Witten invariants, J. Amer. Math. Soc. 10 (1997), no. 4, 973–998. MR 1451505, DOI 10.1090/S0894-0347-97-00246-4
- Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551–568, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901075, DOI 10.17323/1609-4514-2001-1-4-551-568
- Alexander B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 23 (2001), 1265–1286. MR 1866444, DOI 10.1155/S1073792801000605
- Eleny-Nicoleta Ionel, Topological recursive relations in $H^{2g}(\scr M_{g,n})$, Invent. Math. 148 (2002), no. 3, 627–658. MR 1908062, DOI 10.1007/s002220100205
- Eleny-Nicoleta Ionel, Relations in the tautological ring of $\scr M_g$, Duke Math. J. 129 (2005), no. 1, 157–186. MR 2155060, DOI 10.1215/S0012-7094-04-12916-1
- F. Janda, Comparing tautological relations from the equivariant Gromov-Witten theory of projective spaces and spin structures, arXiv: 1407.4778.
- F. Janda, Relations in the tautological ring and Frobenius manifolds near the discriminant, arXiv: 1505.03419.
- F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine. Double ramification cycles on the moduli spaces of curves, arXiv:1602.04705.
- Paul Johnson, Equivariant GW theory of stacky curves, Comm. Math. Phys. 327 (2014), no. 2, 333–386. MR 3183403, DOI 10.1007/s00220-014-2021-1
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Kefeng Liu and Hao Xu, Computing top intersections in the tautological ring of $\scr {M}_g$, Math. Z. 270 (2012), no. 3-4, 819–837. MR 2892926, DOI 10.1007/s00209-010-0828-9
- Xiaobo Liu and Rahul Pandharipande, New topological recursion relations, J. Algebraic Geom. 20 (2011), no. 3, 479–494. MR 2786663, DOI 10.1090/S1056-3911-2010-00559-0
- Eduard Looijenga, On the tautological ring of ${\scr M}_g$, Invent. Math. 121 (1995), no. 2, 411–419. MR 1346214, DOI 10.1007/BF01884306
- A. Marian, D. Oprea, R. Pandharipande, A. Pixton, and D. Zvonkine, The Chern character of the Verlinde bundle over ${M}_{g,n}$, arXiv: 1311.3028, 2014.
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- R. Pandharipande and A. Pixton, Relations in the tautological ring of the moduli space of curves, arXiv: 1301.4561.
- Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine, Relations on $\overline {\scr M}_{g,n}$ via $3$-spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279–309. MR 3264769, DOI 10.1090/S0894-0347-2014-00808-0
- A. Pixton, Conjectural relations in the tautological ring of $\overline {M}_{g,n}$, arXiv: 1207.1918.
- Aaron Pixton, The tautological ring of the moduli space of curves, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Princeton University. MR 3153424
- Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), no. 3, 525–588. MR 2917177, DOI 10.1007/s00222-011-0352-5
- B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, $K$-Theory 18 (1999), no. 1, 33–76 (French, with English and French summaries). MR 1710187, DOI 10.1023/A:1007791200714
- Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), no. 1, 1–81. MR 2578300, DOI 10.2140/gt.2010.14.1
- Stephanie Yang, Intersection numbers on $\overline {\scr M}_{g,n}$, J. Softw. Algebra Geom. 2 (2010), 1–5. MR 2881127, DOI 10.2140/jsag.2010.2.1
Bibliographic Information
- Emily Clader
- Affiliation: Department of Mathematics, San Francisco State University, Thornton Hall 937, 1600 Holloway Avenue, San Francisco, CA 94132
- MR Author ID: 870826
- Email: eclader@sfsu.edu
- Received by editor(s): March 2, 2016
- Published electronically: September 15, 2016
- Additional Notes: This work was partially supported by FRG grant DMS-1159265, RTG grant DMS-1045119, Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
- Communicated by: Lev Borisov
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 11-21
- MSC (2010): Primary 14H10
- DOI: https://doi.org/10.1090/proc/13344
- MathSciNet review: 3565356