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ON THE NECESSITY OF BUMP CONDITIONS

FOR THE TWO-WEIGHTED MAXIMAL INEQUALITY

LENKA SLAVÍKOVÁ

(Communicated by Alexander Iosevich)

Abstract. We study the necessity of bump conditions for the boundedness
of the Hardy-Littlewood maximal operator between weighted Lp spaces with

different weights. The conditions in question are obtained by replacing the Lp′ -

average of σ
1
p′ in the Muckenhoupt Ap-condition by an average with respect

to a stronger Banach function norm, and are known to be sufficient for the
two-weighted maximal inequality. We show that these conditions are in general
not necessary for such an inequality to be true.

1. Introduction and statement of the result

The Hardy–Littlewood maximal operator M is defined for every measurable
function f on R

n by

Mf(x) = sup
Q:x∈Q

1

|Q|

∫
Q

|f |, x ∈ R
n,

where the supremum is taken over all cubes Q containing x. By a “cube” we always
mean a compact cube with sides parallel to coordinate axes.

Assume that 1 < p < ∞. A longstanding open problem in harmonic analysis
is to characterize those couples (w, σ) of nonnegative locally integrable functions,
called weights in the sequel, which satisfy the inequality

(1.1)

∫
Rn

w(M(fσ))p ≤ C

∫
Rn

σ|f |p

for all measurable functions f and some positive constant C.
In the special case when σ = w1−p′

, where p′ = p
p−1 , inequality (1.1) was

characterized by Muckenhoupt [14]. He showed that the correct necessary and
sufficient condition is the Ap-condition

(1.2) sup
Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

σ

)p−1

< ∞.

We note that throughout this paper, the notation supQ means that the supremum
is taken over all cubes Q in R

n.
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The situation is much more complicated in the two-weighted case, when we do
not assume any relationship between w and σ. It is well known that the Ap-
condition (1.2) is still necessary for (1.1) in this setting, but it is not sufficient
anymore (see, e.g., [9, Chapter 4, Example 1.15]). A solution to the two-weighted
problem was given by Sawyer [23], who showed that (1.1) holds if and only if there
is a positive constant C such that

(1.3)

∫
Q

w(M(χQσ))
p ≤ C

∫
Q

σ

for every cube Q. This characterizing condition, however, still involves the operator
M itself, and hence does not give a quite satisfactory answer to the above-mentioned
problem.

Another approach to the two-weighted problem (1.1) consists in finding suffi-
cient conditions for (1.1) that are close in form to the Ap-condition (1.2). These
conditions are called “bump conditions” in the literature. They are more explicit
than (1.3), and thus more appropriate for the use in applications. On the other
hand, as we will show in the present paper, these conditions are not necessary
for (1.1) - at least not in their currently available form.

To introduce the bump theory, let us first observe that the Ap-condition (1.2)
can be written in the form

(1.4) sup
Q

‖w 1
p ‖Lp,Q‖σ

1
p′ ‖Lp′ ,Q < ∞,

where, for any q ∈ (1,∞) and any cube Q, ‖ · ‖Lq ,Q denotes the Lq-norm on Q with
respect to the normalized Lebesgue measure dx/|Q|.

Neugebauer [17] showed that if the norms in (1.4) are replaced by stronger
Lebesgue norms, namely, if

(1.5) sup
Q

‖w 1
p ‖Lpr ,Q‖σ

1
p′ ‖Lp′r,Q < ∞

holds for some r > 1, then the two-weighted maximal inequality (1.1) is fulfilled.
Pérez [20] found a way how to weaken the sufficient condition (1.5). He noticed

that in order to obtain (1.1) one just needs to “bump” in a suitable way the Lp′
-

norm of σ
1
p′ in (1.4). He also showed that more general norms than just those of

Lebesgue can be used in this connection. For instance, if LB denotes the Orlicz
space induced by the Young function B and ‖ · ‖LB ,Q stands for the normalized
Orlicz norm on a cube Q, then the bump condition

(1.6) sup
Q

‖w 1
p ‖Lp,Q‖σ

1
p′ ‖LB ,Q < ∞

was proved in [20] to be sufficient for (1.1) provided that the complementary Young
function B ∈ Bp, that is, B satisfies the Bp-condition

(1.7)

∫ ∞

1

B(t)

tp
dt

t
< ∞.

(See Section 2 for definitions regarding Orlicz spaces.) We point out that condi-
tion (1.7) is sharp in the sense that whenever LB is an Orlicz space such that (1.6)
implies (1.1) for every couple (w, σ), then (1.7) has to be fulfilled.

A basic example of an Orlicz space for which this result can be applied is the
Lebesgue space Lq with q > p′. The strength of the result lies, however, in Orlicz
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spaces that are “closer to Lp′
”, such as, for instance, the space Lp′

(logL)γ with
γ > p′ − 1.

The last result can be further improved if yet more general spaces of measurable
functions, the so-called “Banach function spaces” (see Section 2 for the definition),
are brought into play. For any Banach function space X, we define the normalized
X-norm on a cube Q by

‖f‖X,Q = ‖τ�(Q)fχQ‖X ,

where τδ denotes, for δ > 0, the dilation operator τδf(x) = f(δx), and �(Q) stands
for the sidelength of the cube Q. The maximal operator MX is then given by

MXf(x) = sup
Q:x∈Q

‖f‖X,Q, x ∈ R
n.

Notice that if X = L1, then MX coincides with the classical Hardy-Littlewood
maximal operator M .

A sufficient condition for (1.1), proved in [20] again, has the form

(1.8) sup
Q

‖w 1
p ‖Lp,Q‖σ

1
p′ ‖X,Q < ∞,

where X is any Banach function space whose associate space X ′ fulfills

(1.9)

∫
Rn

(MX′f)p ≤ C

∫
Rn

|f |p

for all measurable functions f and some positive constant C. Condition (1.9) can
be reduced to the Bp-condition if X is an Orlicz space.

Condition (1.9) can be weakened if we allow it to depend on σ. Namely, the
following implication holds: if X is a Banach function space such that (1.8) is
fulfilled and there is a positive constant C for which

(1.10)

∫
Q

(MX′(σ
1
pχQ))

p ≤ C

∫
Q

σ

for every cube Q, then (1.1) holds. This was proved by Pérez and Rela [21] as a
consequence of the Sawyer characterization of the two-weighted maximal inequality.
We note that the result in [21] is restricted only to Orlicz spaces, however, it is easy
to observe that the proof given there works equally well for an arbitrary Banach
function space over Rn. Moreover, the paper [21] gives even a quantitative version
of this result which is shown to hold, at least for Orlicz spaces, not only in the
Euclidean setting, but also in the more general context of spaces of homogeneous
type.

It is worth noticing that condition (1.10) is in many situations considerably
weaker than (1.9). For instance, one can easily observe that (1.9) is not valid when
X ′ = Lp, while (1.10) holds with X ′ = Lp if and only if

(1.11)

∫
Q

(MLp(σ
1
pχQ))

p =

∫
Q

M(σχQ) ≤ C

∫
Q

σ

for all cubes Q. It was shown by Fujii [8] and rediscovered later by Wilson [24] that
the validity of condition (1.11) is equivalent to the fact that σ is an A∞-weight,
that is, a weight which satisfies the one-weighted Ap-condition for some p > 1.

Let us mention that the bump theory is an active area of research not only
in connection with the two-weighted inequality for the Hardy-Littlewood maxi-
mal operator, but also in connection with a similar inequality for other operators.
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A power bump condition for fractional integrals appeared in [22] and its extension
into the setting of Banach function spaces was found in [18]. A very popular line
of research is nowadays the study of bump conditions for singular integral opera-
tors. An early contribution to the investigation of this topic constitutes, e.g., the
paper [19]. More recently, it has been shown that the bump condition

(1.12) sup
Q

‖w 1
p ‖LA,Q‖σ

1
p′ ‖LB ,Q < ∞

is sufficient for the two-weighted inequality for singular integral operators provided
that A ∈ Bp′ and B ∈ Bp. The proof in full generality was found by Lerner [13] and

independently by Nazarov, Reznikov, Treil and Volberg [15] (for p = 2), completing
the series of several partial results [3–6, 12]. It was conjectured that the weaker
condition

sup
Q

‖w 1
p ‖Lp,Q‖σ

1
p′ ‖LB ,Q < ∞ & sup

Q
‖w 1

p ‖LA,Q‖σ
1
p′ ‖Lp′ ,Q < ∞

with A ∈ Bp′ and B ∈ Bp might be sufficient as well, however, only partial results
have been proved so far - see, e.g., [1, 7, 10, 11, 16].

The principal question we shall discuss in this paper is the necessity of bump
conditions for the two-weighted maximal inequality. As we have seen, several ver-
sions of bump conditions are now available in the literature. We shall focus on the
one due to Pérez and Rela [21], which has been the weakest so far.

Question 1.1. Given a couple (w, σ) of weights satisfying (1.1), is it true that
there is a Banach function space X fulfilling (1.8) and (1.10)?

We notice that the answer to this question is positive whenever σ is an A∞-
weight. Indeed, in this situation it suffices to take X = Lp′

. We already know
that (1.10) is then fulfilled (see (1.11)). Further, condition (1.8) is in this case
just the standard Ap-condition, which is well known to be necessary for (1.1). In
fact, according to the reverse Hölder inequality (see, e.g., [9, Chapter 4, Lemma

2.5]), condition (1.1) implies even (1.8) with X = Lp′+ε for some ε > 0, depending

on σ. Since the space X = Lp′+ε satisfies not only (1.10), but also the stronger

condition (1.9) (or, equivalently, condition (1.7) with B(t) = tp
′+ε), one can obtain

even a better conclusion in this case.
The interesting problem is whether a similar result holds without the A∞-

assumption. We show that this is not the case in general.
Given x ∈ R

n, we shall denote by |x|max the maximum norm of x, that is, if
x = (x1, . . . , xn), then |x|max = maxi=1,...,n |xi|. We shall also use the notation
log+ x = max{log x, 0}, x > 0.

Theorem 1.2. Let 1 < p < ∞, and let

w(x) =
|x|n(p−1)

max

(1 + log+ |x|nmax)
p
,

σ(x) =
1

|x|nmax(1 + log+
1

|x|nmax
)p′ , x ∈ R

n \ {0}.

Then the couple (w, σ) fulfills (1.1), but there is no Banach function space X for
which (1.8) and (1.10) hold simultaneously.
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Remark 1.3. Assume that α ∈ (0, n) and β ∈ R, and set

σ(x) =
1

|x|αmax(1 + log+
1

|x|nmax
)β

, x ∈ R
n \ {0}.

Then the answer to Question 1.1 is positive, regardless of what w is. This follows
from the fact that σ is an A∞-weight, combined with our previous observations.

2. Preliminaries

In this section we collect necessary prerequisities from the theory of Banach
function spaces. An interested reader can find more details in [2].

Let n ∈ N. We denote by M the set of all Lebesgue measurable functions on
R

n having their values in [−∞,∞]. If F is a measurable subset of Rn, then |F |
denotes the Lebesgue measure of F .

We say that a functional ‖ · ‖X : M → [0,∞] is a Banach function norm if, for
all functions f , g ∈ M, for all sequences (fk)

∞
k=1 in M and for all constants a ∈ R,

the following properties hold:

(P1) ‖f‖X = 0 if and only if f = 0 a.e.; ‖af‖X = |a|‖f‖X ;
‖f + g‖X ≤ ‖f‖X + ‖g‖X ;

(P2) |f | ≤ |g| a.e. implies ‖f‖X ≤ ‖g‖X ;
(P3) |fk| ↗ |f | a.e. implies ‖fk‖X ↗ ‖f‖X ;
(P4) if F ⊆ R

n with |F | < ∞, then ‖χF ‖X < ∞;
(P5) if F ⊆ R

n with |F | < ∞, then
∫
F
|f(x)| dx ≤ CF ‖f‖X

for some constant CF depending on F but independent of f .

The collection of all f ∈ M for which ‖f‖X < ∞ is denoted by X and is called
a Banach function space.

To every Banach function norm ‖ · ‖X there corresponds another functional on
M, denoted by ‖ · ‖X′ and defined, for g ∈ M, by

(2.1) ‖g‖X′ = sup
‖f‖X≤1

∫
Rn

|f(x)g(x)| dx.

It turns out that ‖ · ‖X′ is also a Banach function norm, we call it the associate
norm of ‖ · ‖X . The Banach function space X ′ built upon the Banach function
norm ‖ · ‖X′ is called the associate space of X. It is known (see, e.g., [2, Chapter
1, Theorem 2.7]) that (X ′)′ = X.

Let us now mention particular examples of Banach function spaces. The basic
examples are the Lebesgue spaces Lp, given by

‖f‖Lp =

{(∫
Rn |f(y)|p dy

) 1
p , 1 ≤ p < ∞;

esssupy∈Rn |f(y)|, p = ∞, f ∈ M.

A generalization of Lebesgue spaces is provided by the notion of Orlicz spaces.
Given a Young function B, namely, a nonnegative continuous increasing convex

function on [0,∞) such that limt→0+
B(t)
t = 0 and limt→∞

B(t)
t = ∞, the Orlicz

norm ‖ · ‖LB is given by

(2.2) ‖f‖LB = inf

{
λ > 0 :

∫
Rn

B

(
|f(y)|
λ

)
dy ≤ 1

}
, f ∈ M.
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It can be shown that ‖ · ‖LB is indeed a Banach function norm and, for any cube
Q, the normalized Orlicz norm on Q can be expressed in the form

‖f‖LB ,Q = inf

{
λ > 0 :

1

|Q|

∫
Q

B

(
|f(y)|
λ

)
dy ≤ 1

}
, f ∈ M.

The associate norm to ‖ · ‖LB is equivalent to another Orlicz norm induced by the
complementary Young function B defined by

B(t) = sup
s≥0

(st−B(s)), t ∈ [0,∞).

For any p ∈ (1,∞), the particular choice of B(t) = tp in (2.2) yields the Lebesgue

space Lp. We note that (Lp)′ = Lp′
, where we employ the usual notation p′ = p

p−1 .

The Orlicz space induced by the Young function B equivalent to tp logγ(e + t)
for p ∈ (1,∞) and γ ∈ R is denoted by Lp(logL)γ and one has (Lp(logL)γ)′ =

Lp′
(logL)−γ .

3. Proof of Theorem 1.2

We devote this section to the proof of Theorem 1.2. Throughout the proof, we
shall denote

Qr = {x ∈ R
n : |x|max ≤ r}, r > 0;

in other words, Qr will stand for the cube centered at 0 and with sidelength 2r. We
shall write “≈” in order to express that the two sides of an equation are equivalent
up to multiplicative constants independent of appropriate quantities.

Proof of Theorem 1.2. We first prove that

(3.1) Mσ(x) ≈
1 +

∣∣∣log 1
|x|nmax

∣∣∣
|x|nmax(1 + log+

1
|x|nmax

)p′ , x ∈ R
n \ {0},

up to multiplicative constants depending on p and n.
Consider the function

f(t) =
1

t(1 + log+
1
t )

p′ , t > 0.

Since limt→0+ f(t) = ∞ and f is nonincreasing on some neighbourhood of 0, we
can find a ∈ (0, 1) such that f(a) ≥ 1 and f is nonincreasing on (0, a). Let us set

g(t) =

⎧⎪⎨
⎪⎩

1
t(1+log 1

t )
p′ , t ∈ (0, a),

1, t ∈ [a, 1],
1
t , t ∈ (1,∞).

Then g is nonincreasing on (0,∞) and f ≈ g on (0,∞), since f(t) = g(t) unless
t ∈ [a, 1], and c1 ≤ f(t) ≤ c2 for some c1 > 0, c2 > 0 and every t ∈ [a, 1]. Therefore,

σ(x) = f(|x|nmax) ≈ g(|x|nmax) =: h(x), x ∈ R
n \ {0},
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and, by the coarea formula,

Mσ(x) ≈ Mh(x) =
1

|Q|x|max
|

∫
Q|x|max

h(y) dy(3.2)

=
1

2n|x|nmax

∫ |x|max

0

∫
{y∈Rn:|y|max=r}

h(y) dHn−1(y) dr

≈ 1

|x|nmax

∫ |x|max

0

g(rn)rn−1 dr ≈ 1

|x|nmax

∫ |x|nmax

0

g(s) ds

≈ 1

|x|nmax

∫ |x|nmax

0

f(s) ds,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.
Given t ∈ (0, 1], we have

(3.3)

∫ t

0

f(s) ds =

∫ t

0

ds

s(1 + log 1
s )

p′ ≈ 1

(1 + log 1
t )

p′−1
=

1 + | log 1
t |

(1 + log+
1
t )

p′ .

Also, if t ∈ (1,∞), then

∫ t

0

f(s) ds =

∫ 1

0

f(s) ds+

∫ t

1

f(s) ds = C +

∫ t

1

ds

s
(3.4)

= C + log t ≈ 1 + log t =
1 + | log 1

t |
(1 + log+

1
t )

p′ .

A combination of (3.2), (3.3) and (3.4) yields (3.1).
Using (3.1), we obtain

(Mσ)p(x)w(x) ≈

(
1 +

∣∣∣log 1
|x|nmax

∣∣∣)p

|x|nmax(1 + log+
1

|x|nmax
)p′p(1 + log+ |x|nmax)

p

=

⎧⎨
⎩

1
|x|nmax(1+log 1

|x|nmax
)p′

, |x|max ≤ 1;

1
|x|nmax

, |x|max > 1

=
1

|x|nmax(1 + log+
1

|x|nmax
)p′ = σ(x), x ∈ R

n \ {0}.

Hence, for any cube Q,

∫
Q

(M(χQσ))
p(x)w(x) dx ≤

∫
Q

(Mσ)p(x)w(x) dx ≈
∫
Q

σ(x) dx,

and Sawyer’s characterization (1.3) of the two-weighted maximal inequality yields
that the couple (w, σ) satisfies (1.1).
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Let X be any Banach function space. Given b ∈ (0, 1), we have∥∥∥σ 1
p

∥∥∥
X′,Qb

=
∥∥∥(σ 1

pχQb

)
(2by)

∥∥∥
X′

=
1

(2b)
n
p

∥∥∥∥∥∥∥∥
χQ 1

2

(y)

|y|
n
p
max

(
1 + log+

1
(2b|y|max)n

) p′
p

∥∥∥∥∥∥∥∥
X′

≥ 1

(2b)
n
p

∥∥∥∥∥∥
χQ 1

2
\Q b

2

(y)

|y|
n
p
max

(
1 + log+

1
b2n

) p′
p

∥∥∥∥∥∥
X′

=
1

(2b)
n
p
(
1 + 2 log+

1
bn

) p′
p

∥∥∥∥∥
χQ 1

2
\Q b

2

(y)

|y|
n
p
max

∥∥∥∥∥
X′

≥ 1

2
n+p′

p b
n
p (1 + log+

1
bn )

p′
p

∥∥∥∥∥
χQ 1

2
\Q b

2

(y)

|y|
n
p
max

∥∥∥∥∥
X′

.

Thus, for any a ∈ (0, 1),∫
Qa

(
MX′(σ

1
pχQa

)
)p

(x) dx ≥
∫
Qa

∥∥∥σ 1
p

∥∥∥p
X′,Q|x|max

dx(3.5)

≥
∫
Qa

1

2p′+n|x|nmax(1 + log+
1

|x|nmax
)p′

∥∥∥∥∥∥
χQ 1

2
\Q |x|max

2

(y)

|y|
n
p
max

∥∥∥∥∥∥
p

X′

dx

≥ 1

2p′+n

∥∥∥∥∥
χQ 1

2
\Q a

2
(y)

|y|
n
p
max

∥∥∥∥∥
p

X′

∫
Qa

dx

|x|nmax(1 + log+
1

|x|nmax
)p′

=
1

2p′+n

∥∥∥∥∥
χQ 1

2
\Q a

2
(y)

|y|
n
p
max

∥∥∥∥∥
p

X′

∫
Qa

σ(x) dx.

Assume that X fulfills (1.10). Then there is a constant C > 0, independent of
a ∈ (0, 1), such that

(3.6)

∫
Qa

(
MX′(σ

1
pχQa

)
)p

(x) dx ≤ C

∫
Qa

σ(x) dx.

Since
∫
Qa

σ(x) dx is positive and finite, a combination of (3.5) and (3.6) yields that

∥∥∥∥∥
χQ 1

2
\Q a

2
(y)

|y|
n
p
max

∥∥∥∥∥
X′

≤ 2
p′+n

p C
1
p =: D.

Passing to limit when a tends to 0 and using the property (P3) of ‖ · ‖X , we obtain

(3.7)

∥∥∥∥∥
χQ 1

2

(y)

|y|
n
p
max

∥∥∥∥∥
X′

≤ D.
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To get a contradiction, assume that condition (1.8) is satisfied as well. Since⎛
⎝∫

Q 1
2

w(x) dx

⎞
⎠

1
p

‖σ
1
p′ ‖X,Q 1

2

= ‖w 1
p ‖Lp,Q 1

2

‖σ
1
p′ ‖X,Q 1

2

≤ sup
Q

‖w 1
p ‖Lp,Q‖σ

1
p′ ‖X,Q < ∞

and
∫
Q 1

2

w(x) dx is clearly positive, we deduce that ‖σ
1
p′ ‖X,Q 1

2

< ∞. However,

by (3.7) and by the identity X = (X ′)′, we have

‖σ
1
p′ ‖X,Q 1

2

= sup
‖u‖X′≤1

∫
Q 1

2

σ
1
p′ (x)|u(x)| dx

≥ 1

D

∫
Q 1

2

σ
1
p′ (x)

|x|
n
p
max

dx

=
1

D

∫
Q 1

2

dx

|x|nmax(1 + log+
1

|x|nmax
)
= ∞,

a contradiction. Thus, conditions (1.8) and (1.10) cannot be fulfilled simultaneously.
The proof is complete. �
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terdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR807149
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