Potential theoretic approach to Schauder estimates for the fractional Laplacian
HTML articles powered by AMS MathViewer
- by Claudia Bucur and Aram L. Karakhanyan
- Proc. Amer. Math. Soc. 145 (2017), 637-651
- DOI: https://doi.org/10.1090/proc/13227
- Published electronically: July 26, 2016
- PDF | Request permission
Abstract:
We present an elementary approach for the proof of Schauder estimates for the equation $(-\Delta )^s u(x)=f(x), 0<s<1$, with $f$ having a modulus of continuity $\omega _f$, based on the Poisson representation formula and dyadic ball approximation argument. We give the explicit modulus of continuity of $u$ in balls $B_r(x)\subset \mathbb {R}^n$ in terms of $\omega _f$.References
- Claudia Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), no. 2, 657–699. MR 3461641, DOI 10.3934/cpaa.2016.15.657
- Claudia Bucur and Enrico Valdinoci, Nonlocal diffusion and applications, preprint, arXiv:1504.08292, 2015. To appear in the Springer series “Unione Matematica Italiana”.
- Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR 1304437
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Lars Diening and Stefan G. Samko, On potentials in generalized Hölder spaces over uniform domains in $\Bbb R^n$, Rev. Mat. Complut. 24 (2011), no. 2, 357–373. MR 2806350, DOI 10.1007/s13163-010-0043-6
- Hongjie Dong and Doyoon Kim, Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2319–2347. MR 3007688, DOI 10.3934/dcds.2013.33.2319
- Bartłomiej Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal. 15 (2012), no. 4, 536–555. MR 2974318, DOI 10.2478/s13540-012-0038-8
- Mouhamed Moustapha Fall, Entire $s$-harmonic functions are affine, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2587–2592. MR 3477075, DOI 10.1090/proc/13021
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- Xavier Ros-Oton and Joaquim Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275–302 (English, with English and French summaries). MR 3168912, DOI 10.1016/j.matpur.2013.06.003
- Raffaella Servadei and Enrico Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), no. 1, 133–154. MR 3161511
- Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67–112. MR 2270163, DOI 10.1002/cpa.20153
- Xu-Jia Wang, Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637–642. MR 2273802, DOI 10.1007/s11401-006-0142-3
- Victor Iosifovich Yudovich, Non-stationary flows of an ideal incompressible fluid. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 3 (1963), no. 6, 1032–1066.
Bibliographic Information
- Claudia Bucur
- Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini, 50, 20100, Milano, Italy
- Email: claudia.bucur@unimi.it
- Aram L. Karakhanyan
- Affiliation: Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- MR Author ID: 788816
- Email: aram.karakhanyan@ed.ac.uk
- Received by editor(s): February 15, 2016
- Received by editor(s) in revised form: March 31, 2016
- Published electronically: July 26, 2016
- Additional Notes: The research of the second author was partially supported by an EPSRC grant
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 637-651
- MSC (2010): Primary 26A33, 35R11
- DOI: https://doi.org/10.1090/proc/13227
- MathSciNet review: 3577867