## On a relation between certain $q$-hypergeometric series and Maass waveforms

HTML articles powered by AMS MathViewer

- by Matthew Krauel, Larry Rolen and Michael Woodbury PDF
- Proc. Amer. Math. Soc.
**145**(2017), 543-557 Request permission

## Abstract:

In this paper, we answer a question of Li, Ngo, and Rhoades concerning a set of $q$-series related to the $q$-hypergeometric series $\sigma$ from Ramanujan’s Lost Notebook. Our results parallel a theorem of Cohen which says that $\sigma$, along with its partner function $\sigma ^\star$, encode the coefficients of a Maass waveform of eigenvalue $1/4$.## References

- G. E. Andrews,
*Ramanujan’s “lost” notebook. V. Euler’s partition identity*, Adv. Math.**61**, 156–164 (1986). - George E. Andrews, Freeman J. Dyson, and Dean Hickerson,
*Partitions and indefinite quadratic forms*, Invent. Math.**91**(1988), no. 3, 391–407. MR**928489**, DOI 10.1007/BF01388778 - Kathrin Bringmann and Ben Kane,
*Multiplicative $q$-hypergeometric series arising from real quadratic fields*, Trans. Amer. Math. Soc.**363**(2011), no. 4, 2191–2209. MR**2746680**, DOI 10.1090/S0002-9947-2010-05214-6 - H. Cohen,
*$q$-identities for Maass waveforms*, Invent. Math.**91**(1988), no. 3, 409–422. MR**928490**, DOI 10.1007/BF01388779 - Daniel Corson, David Favero, Kate Liesinger, and Sarah Zubairy,
*Characters and $q$-series in ${\Bbb Q}(\sqrt {2})$*, J. Number Theory**107**(2004), no. 2, 392–405. MR**2072397**, DOI 10.1016/j.jnt.2004.03.002 - J. Lewis and D. Zagier,
*Period functions and the Selberg zeta function for the modular group*, The mathematical beauty of physics (Saclay, 1996) Adv. Ser. Math. Phys., vol. 24, World Sci. Publ., River Edge, NJ, 1997, pp. 83–97. MR**1490850** - J. Lewis and D. Zagier,
*Period functions for Maass wave forms. I*, Ann. of Math. (2)**153**(2001), no. 1, 191–258. MR**1826413**, DOI 10.2307/2661374 - Jeremy Lovejoy,
*Overpartitions and real quadratic fields*, J. Number Theory**106**(2004), no. 1, 178–186. MR**2049600**, DOI 10.1016/j.jnt.2003.12.014 - Y. Li, H. Ngo, and C. Rhoades,
*Renormalization and quantum modular forms, part I: Maass wave forms*, preprint, arXiv:1311.3043. - Don Zagier,
*Quantum modular forms*, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 659–675. MR**2757599** - Sander P. Zwegers,
*Mock Maass theta functions*, Q. J. Math.**63**(2012), no. 3, 753–770. MR**2967174**, DOI 10.1093/qmath/har020

## Additional Information

**Matthew Krauel**- Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
- MR Author ID: 982089
- Email: mkrauel@math.uni-koeln.de
**Larry Rolen**- Affiliation: Department of Mathematics, 212 McAllister Building, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 923990
- ORCID: 0000-0001-8671-8117
- Email: larryrolen@psu.edu
**Michael Woodbury**- Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
- MR Author ID: 817209
- Email: woodbury@math.uni-koeln.de
- Received by editor(s): December 28, 2015
- Received by editor(s) in revised form: March 15, 2016, and April 12, 2016
- Published electronically: August 23, 2016
- Additional Notes: The first author was supported by the European Research Council (ERC) Grant agreement n. 335220 - AQSER

The second author thanks the University of Cologne and the DFG for their generous support via the University of Cologne postdoc grant DFG Grant D-72133-G-403-151001011, funded under the Institutional Strategy of the University of Cologne within the German Excellence Initiative - Communicated by: Kathrin Bringmann
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 543-557 - MSC (2010): Primary 11F03, 11F27
- DOI: https://doi.org/10.1090/proc/13246
- MathSciNet review: 3577859