Entropy flux - electrostatic capacity - graphical mass
HTML articles powered by AMS MathViewer
- by J. Xiao
- Proc. Amer. Math. Soc. 145 (2017), 825-832
- DOI: https://doi.org/10.1090/proc/13259
- Published electronically: August 5, 2016
- PDF | Request permission
Abstract:
This note shows that the optimal inequality \[ \mathsf {F}(K,\kappa )\le \mathsf {C}(K)\le 2(n-2)\sigma _{n-1}\mathsf {M}(\mathbb R^n\setminus K^\circ ,\delta +df\otimes df) \] holds for the entropy flux $\mathsf {F}(K,\kappa )$, the electrostatic capacity $\mathsf {C}(K)=\mathsf {C}(\partial K)$ and the graphical mass $\mathsf {M}(\mathbb R^n\setminus K^\circ ,\delta +df\otimes df)$ generated by a compact $K\subset \mathbb R^{n\ge 3}$ with nonempty interior $K^\circ$ and smooth boundary $\partial K$.References
- Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177–267. MR 1908823
- Hubert Bray and Pengzi Miao, On the capacity of surfaces in manifolds with nonnegative scalar curvature, Invent. Math. 172 (2008), no. 3, 459–475. MR 2393076, DOI 10.1007/s00222-007-0102-x
- Andrea Colesanti and Paolo Salani, The Brunn-Minkowski inequality for $p$-capacity of convex bodies, Math. Ann. 327 (2003), no. 3, 459–479. MR 2021025, DOI 10.1007/s00208-003-0460-7
- W. A. Day, Entropy and partial differential equations, Pitman Research Notes in Mathematics Series, vol. 295, Longman Scientific & Technical, Harlow, 1993. MR 1413296
- L. C. Evans, Entropy and Partial Differential Equations, https://math.berkeley.edu/ evans/entropy.and.PDE.pdf.
- L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000. MR 1751289, DOI 10.1017/CBO9780511569203
- Alexandre Freire and Fernando Schwartz, Mass-capacity inequalities for conformally flat manifolds with boundary, Comm. Partial Differential Equations 39 (2014), no. 1, 98–119. MR 3169780, DOI 10.1080/03605302.2013.851211
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
- Lan-Hsuan Huang and Damin Wu, Hypersurfaces with nonnegative scalar curvature, J. Differential Geom. 95 (2013), no. 2, 249–278. MR 3128984
- Lan-Hsuan Huang and Damin Wu, The equality case of the Penrose inequality for asymptotically flat graphs, Trans. Amer. Math. Soc. 367 (2015), no. 1, 31–47. MR 3271252, DOI 10.1090/S0002-9947-2014-06090-X
- Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
- Mau-Kwong George Lam, The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Duke University. MR 2873434
- John L. Lewis, Capacitary functions in convex rings, Arch. Rational Mech. Anal. 66 (1977), no. 3, 201–224. MR 477094, DOI 10.1007/BF00250671
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- Vladimir Maz′ya, Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings, J. Funct. Anal. 224 (2005), no. 2, 408–430. MR 2146047, DOI 10.1016/j.jfa.2004.09.009
- Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011. MR 2777530, DOI 10.1007/978-3-642-15564-2
- G. Menon, Lectures on partial differential equations, http://www.dam.brown.edu/people/menon/am223/pde.pdf.
- G. Pólya, Estimating electrostatic capacity, Amer. Math. Monthly 54 (1947), 201–206. MR 20175, DOI 10.2307/2304698
- Wolfgang Reichel, Characterization of balls by Riesz-potentials, Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 235–245. MR 2491802, DOI 10.1007/s10231-008-0073-6
- Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR 526976
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183. MR 535700, DOI 10.1007/BF01647970
- Fernando Schwartz, A volumetric Penrose inequality for conformally flat manifolds, Ann. Henri Poincaré 12 (2011), no. 1, 67–76. MR 2770090, DOI 10.1007/s00023-010-0070-3
- M. Shubin, Capacity and its applications, http://citeseerx.ist.psu.edu/viewdoc/download?doi =10.1.1.140.1404&rep=rep1&type=pdf.
- Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), no. 3, 381–402. MR 626707
- J. Xiao, A maximum problem of S.-T. Yau for variational $p$-capacity, Adv. Geom. (in press) (2016).
Bibliographic Information
- J. Xiao
- Affiliation: Department of Mathematics and Statistics, Memorial University, St. John’s, Newfoundland A1C 5S7, Canada
- MR Author ID: 247959
- Email: jxiao@mun.ca
- Received by editor(s): October 20, 2015
- Received by editor(s) in revised form: April 22, 2016
- Published electronically: August 5, 2016
- Additional Notes: This project was in part supported by NSERC of Canada (202979463102000).
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 825-832
- MSC (2010): Primary 31B15, 35N25, 52A40
- DOI: https://doi.org/10.1090/proc/13259
- MathSciNet review: 3577881