The specialization index of a variety over a discretely valued field
HTML articles powered by AMS MathViewer
- by Lore Kesteloot and Johannes Nicaise
- Proc. Amer. Math. Soc. 145 (2017), 585-599
- DOI: https://doi.org/10.1090/proc/13266
- Published electronically: August 30, 2016
- PDF | Request permission
Abstract:
Let $X$ be a proper variety over a henselian discretely valued field. An important obstruction to the existence of a rational point on $X$ is the index, the minimal positive degree of a zero-cycle on $X$. This paper introduces a new invariant, the specialization index, which is a closer approximation of the existence of a rational point. We provide an explicit formula for the specialization index in terms of an $snc$-model, and we give examples of curves where the index equals one but the specialization index is different from one, and thus explains the absence of a rational point. Our main result states that the specialization index of a smooth, proper, geometrically connected $\mathbb {C}((t))$-variety with trivial coherent cohomology is equal to one.References
- Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, DOI 10.1007/BF01444889
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- V. Cossart, U. Jannsen, and S. Saito, Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes. Preprint, arXiv:0905.2191.
- V. Cossart and O. Piltant, Resolution of singularities of arithmetical threefolds II, Preprint, arXiv:1412.0868.
- A. J. de Jong and J. Starr, Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math. 125 (2003), no. 3, 567–580. MR 1981034
- B. Deusler and A. Knecht, Rationally connected varieties over the maximally unramified extension of p-adic fields, arXiv preprint arXiv:0906.2364.
- Hélène Esnault, Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math. 151 (2003), no. 1, 187–191. MR 1943746, DOI 10.1007/s00222-002-0261-8
- Hélène Esnault, Marc Levine, and Olivier Wittenberg, Index of varieties over Henselian fields and Euler characteristic of coherent sheaves, J. Algebraic Geom. 24 (2015), no. 4, 693–718. MR 3383601, DOI 10.1090/jag/639
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI 10.1090/S0894-0347-02-00402-2
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- A. Grothendieck. Cohomologie $\ell$-adique et fonctions $\ell$, Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5). Volume 589 of Lecture Notes in Mathematics. Springer-Verlag, 1977.
- Luc Illusie, Kazuya Kato, and Chikara Nakayama, Quasi-unipotent logarithmic Riemann-Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005), no. 1, 1–66. MR 2126784
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI 10.2307/2374941
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- Guillaume Lafon, Une surface d’Enriques sans point sur ${\Bbb C}((t))$, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 51–54 (French, with English and French summaries). MR 2038084, DOI 10.1016/j.crma.2003.10.031
- Serge Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373–390. MR 46388, DOI 10.2307/1969785
- Stephen Lichtenbaum, The period-index problem for elliptic curves, Amer. J. Math. 90 (1968), 1209–1223. MR 237506, DOI 10.2307/2373297
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Johannes Nicaise, Geometric criteria for tame ramification, Math. Z. 273 (2013), no. 3-4, 839–868. MR 3030680, DOI 10.1007/s00209-012-1034-8
- Paulo Ribenboim, The theory of classical valuations, Springer Monographs in Mathematics, Springer-Verlag, New York, 1999. MR 1677964, DOI 10.1007/978-1-4612-0551-7
- I. R. Šafarevič, Principal homogeneous spaces defined over a function field, Trudy Mat. Inst. Steklov. 64 (1961), 316–346 (Russian). MR 0162806
- Kazuhiro Uematsu, Numerical classification of singular fibers in genus $3$ pencils, J. Math. Kyoto Univ. 39 (1999), no. 4, 763–782. MR 1740203, DOI 10.1215/kjm/1250517826
- Jianhua Wang, Equivariant resolution of singularities and semi-stable reduction in characteristic 0, ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716736
- Gayn B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215–228. MR 357406, DOI 10.2307/2373628
- Olivier Wittenberg, Sur une conjecture de Kato et Kuzumaki concernant les hypersurfaces de Fano, Duke Math. J. 164 (2015), no. 11, 2185–2211 (French, with English and French summaries). MR 3385132, DOI 10.1215/00127094-3129488
Bibliographic Information
- Lore Kesteloot
- Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium
- Email: lore.kesteloot@wis.kuleuven.be
- Johannes Nicaise
- Affiliation: Department of Mathematics, Imperial College, South Kensington Campus, London SW72AZ, United Kingdom – and – KU Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Heverlee, Belgium
- MR Author ID: 725638
- Email: j.nicaise@imperial.ac.uk
- Received by editor(s): August 12, 2015
- Received by editor(s) in revised form: March 15, 2016, and April 30, 2016
- Published electronically: August 30, 2016
- Additional Notes: The research of the first author was supported by a Ph.D. fellowship of the Research Foundation of Flanders (FWO)
- Communicated by: Romyar T. Sharifi
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 585-599
- MSC (2010): Primary 14G05, 14G20
- DOI: https://doi.org/10.1090/proc/13266
- MathSciNet review: 3577863