Instability of equatorial edge waves in the background flow
HTML articles powered by AMS MathViewer
- by Lili Fan and Hongjun Gao
- Proc. Amer. Math. Soc. 145 (2017), 765-778
- DOI: https://doi.org/10.1090/proc/13308
- Published electronically: October 20, 2016
- PDF | Request permission
Abstract:
In this paper, we first present an explicit exact solution to the edge wave problem in stratified geophysical flows with an underlying longshore current. Then we analyze the short-wavelength perturbation approach for barotropic incompressible fluids. Finally, we prove, by applying this method to geophysical equatorial edge waves in the background flow, that these waves are unstable when their steepness exceeds a specific threshold.References
- B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in: Miksad, R.W., Akylas, T.R., Herbert, T., editors, Nonlinear wave interactions in fluids, New York (NY): ASME, 1987, pp. 71–77.
- Adrian Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. MR 2867413, DOI 10.1137/1.9781611971873
- Adrian Constantin, Edge waves along a sloping beach, J. Phys. A 34 (2001), no. 45, 9723–9731. MR 1876166, DOI 10.1088/0305-4470/34/45/311
- A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans 117 (2012), C05029.
- A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr. 43 (2013), 165–175.
- A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr. 44 (2014), 781–789.
- A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans 118 (2013), 2802–2810.
- M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides heterogenes, Atti Accad. Naz. Lincei 15 (1932), 814–819.
- Ulf Torsten Ehrenmark, Oblique wave incidence on a plane beach: the classical problem revisited, J. Fluid Mech. 368 (1998), 291–319. MR 1640061, DOI 10.1017/S0022112098001888
- Susan Friedlander and Alexander Lipton-Lifschitz, Localized instabilities in fluids, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 289–354. MR 1984155, DOI 10.1016/S1874-5792(03)80010-1
- Susan Friedlander and Misha M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett. 66 (1991), no. 17, 2204–2206. MR 1102381, DOI 10.1103/PhysRevLett.66.2204
- Susan Friedlander and Victor Yudovich, Instabilities in fluid motion, Notices Amer. Math. Soc. 46 (1999), no. 11, 1358–1367. MR 1723245
- W. Froude, On the rolling of ships, Trans. Inst. Naval Arch. 3 (1862), 45–62.
- François Genoud and David Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech. 16 (2014), no. 4, 661–667. MR 3267540, DOI 10.1007/s00021-014-0175-4
- F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys. 2 (1809), 412–445.
- O. A. Godin, Incompressible wave motion of compressible fluids, Phys. Rev. Lett. 108 (2012), 194501.
- O. A. Godin, Shear waves in inhomogeneous, compressible fluids in a gravity field, J. Acoust. Soc. Am. 135 (2014), 1071–1082.
- Oleg A. Godin, Finite-amplitude acoustic-gravity waves: exact solutions, J. Fluid Mech. 767 (2015), 52–64. MR 3312256, DOI 10.1017/jfm.2015.40
- David Henry, On Gerstner’s water wave, J. Nonlinear Math. Phys. 15 (2008), no. suppl. 2, 87–95. MR 2434727, DOI 10.2991/jnmp.2008.15.s2.7
- David Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids 38 (2013), 18–21. MR 3009060, DOI 10.1016/j.euromechflu.2012.10.001
- David Henry and Hung-Chu Hsu, Instability of equatorial water waves in the $f$-plane, Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 909–916. MR 3277177, DOI 10.3934/dcds.2015.35.909
- David Henry and Hung-Chu Hsu, Instability of internal equatorial water waves, J. Differential Equations 258 (2015), no. 4, 1015–1024. MR 3294339, DOI 10.1016/j.jde.2014.08.019
- David Henry and Octavian G. Mustafa, Existence of solutions for a class of edge wave equations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 5, 1113–1119. MR 2224873, DOI 10.3934/dcdsb.2006.6.1113
- P. A. Howd, A. J. Bowen, and R. A. Holman, Edge waves in the presence of strong longshore currents, J. Geophys. Res. 97 (1992), 11357–11371.
- Hung-Chu Hsu, An exact solution for equatorial waves, Monatsh. Math. 176 (2015), no. 1, 143–152. MR 3296207, DOI 10.1007/s00605-014-0618-2
- Hung-Chu Hsu, An exact solution for nonlinear internal equatorial waves in the $f$-plane approximation, J. Math. Fluid Mech. 16 (2014), no. 3, 463–471. MR 3247362, DOI 10.1007/s00021-014-0168-3
- Hung-Chu Hsu, Some nonlinear internal equatorial waves with a strong underlying current, Appl. Math. Lett. 34 (2014), 1–6. MR 3212219, DOI 10.1016/j.aml.2014.03.005
- Hung-Chu Hsu, Instability criteria for some geophysical equatorial edge waves, Appl. Anal. 94 (2015), no. 7, 1498–1507. MR 3345469, DOI 10.1080/00036811.2014.936009
- Hung-Chu Hsu, Edge waves with longshore currents, Quart. Appl. Math. 73 (2015), no. 3, 593–598. MR 3400761, DOI 10.1090/qam/1399
- Delia Ionescu-Kruse, An exact solution for geophysical edge waves in the $f$-plane approximation, Nonlinear Anal. Real World Appl. 24 (2015), 190–195. MR 3332890, DOI 10.1016/j.nonrwa.2015.02.002
- Delia Ionescu-Kruse, Instability of equatorially trapped waves in stratified water, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 585–599. MR 3476690, DOI 10.1007/s10231-015-0479-x
- Delia Ionescu-Kruse, Short-wavelength instabilities of edge waves in stratified water, Discrete Contin. Dyn. Syst. 35 (2015), no. 5, 2053–2066. MR 3294237, DOI 10.3934/dcds.2015.35.2053
- Delia Ionescu-Kruse, Instability of edge waves along a sloping beach, J. Differential Equations 256 (2014), no. 12, 3999–4012. MR 3190490, DOI 10.1016/j.jde.2014.03.009
- Delia Ionescu-Kruse, An exact solution for geophysical edge waves in the $\beta$-plane approximation, J. Math. Fluid Mech. 17 (2015), no. 4, 699–706. MR 3412274, DOI 10.1007/s00021-015-0233-6
- R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1629555, DOI 10.1017/CBO9780511624056
- R. S. Johnson, Edge waves: theories past and present, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007), no. 1858, 2359–2376. MR 2329153, DOI 10.1098/rsta.2007.2013
- Henrik Kalisch, Periodic traveling water waves with isobaric streamlines, J. Nonlinear Math. Phys. 11 (2004), no. 4, 461–471. MR 2097657, DOI 10.2991/jnmp.2004.11.4.3
- Stéphane Leblanc, Local stability of Gerstner’s waves, J. Fluid Mech. 506 (2004), 245–254. MR 2259488, DOI 10.1017/S0022112004008444
- Alexander Lifschitz and Eliezer Hameiri, Local stability conditions in fluid dynamics, Phys. Fluids A 3 (1991), no. 11, 2644–2651. MR 1137216, DOI 10.1063/1.858153
- Anca-Voichita Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A 45 (2012), no. 36, 365501, 10. MR 2967917, DOI 10.1088/1751-8113/45/36/365501
- Anca-Voichita Matioc, Exact geophysical waves in stratified fluids, Appl. Anal. 92 (2013), no. 11, 2254–2261. MR 3169161, DOI 10.1080/00036811.2012.727987
- W. J. M. Rankine, On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A 153 (1863), 127–138.
- F. Reech, Sur la théorie des ondes liquides périodiques, C. R. Acad. Sci. Paris 68 (1869), 1099–1101.
- Roman Shvydkoy, The essential spectrum of advective equations, Comm. Math. Phys. 265 (2006), no. 2, 507–545. MR 2231681, DOI 10.1007/s00220-006-1537-4
- G. G. Stokes, Report on recent researches in hydrodynamics, Rep. British Assoc. Adv. Sci. (1846), 1–20.
- Raphael Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys. 18 (2011), no. 1, 127–137. MR 2786939, DOI 10.1142/S1402925111001210
- Raphael Stuhlmeier, Internal Gerstner waves on a sloping bed, Discrete Contin. Dyn. Syst. 34 (2014), no. 8, 3183–3192. MR 3177717, DOI 10.3934/dcds.2014.34.3183
- G. B. Whitham, Lectures on wave propagation, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 61, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1979. MR 563727
- C. S. Yih, Note on edge waves in a stratified fluid, J. Fluid Mech. 24 (1966), 765–767.
Bibliographic Information
- Lili Fan
- Affiliation: School of Mathematical Sciences, Institute of Mathematics, Nanjing Normal University, Nanjing 210023, People’s Republic of China — and — College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, People’s Republic of China
- MR Author ID: 1109517
- Email: fanlily89@126.com
- Hongjun Gao
- Affiliation: School of Mathematical Sciences, Institute of Mathematics and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, People’s Republic of China — and — Institute of Mathematics, Jilin University, Changchun 130012, People’s Republic of China, corresponding author
- Email: gaohj@njnu.edu.cn
- Received by editor(s): April 18, 2016
- Published electronically: October 20, 2016
- Communicated by: Catherine Sulem
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 765-778
- MSC (2010): Primary 35Q86, 76E20, 34E20, 76B70
- DOI: https://doi.org/10.1090/proc/13308
- MathSciNet review: 3577876