On hereditary properties of quantum group amenability
HTML articles powered by AMS MathViewer
- by Jason Crann
- Proc. Amer. Math. Soc. 145 (2017), 627-635
- DOI: https://doi.org/10.1090/proc/13365
- Published electronically: October 18, 2016
- PDF | Request permission
Abstract:
Given a locally compact quantum group $\mathbb {G}$ and a closed quantum subgroup $\mathbb {H}$, we show that $\mathbb {G}$ is amenable if and only if $\mathbb {H}$ is amenable and $\mathbb {G}$ acts amenably on the quantum homogenous space $\mathbb {G}/\mathbb {H}$. We also study the existence of $L^1(\widehat {\mathbb {G}})$-module projections from $L^{\infty }(\widehat {\mathbb {G}})$ onto $L^{\infty }(\widehat {\mathbb {H}})$.References
- E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865–884. MR 2013149, DOI 10.1142/S0129167X03002046
- Man Duen Choi, A Schwarz inequality for positive linear maps on $C^{\ast } \$-algebras, Illinois J. Math. 18 (1974), 565–574. MR 355615
- J. Crann, Amenability and covariant injectivity of locally compact quantum groups II. Canadian J. Math. to appear. arXiv:1507.03296.
- Jason Crann and Matthias Neufang, Amenability and covariant injectivity of locally compact quantum groups, Trans. Amer. Math. Soc. 368 (2016), no. 1, 495–513. MR 3413871, DOI 10.1090/tran/6374
- H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, Proc. London Math. Soc. (3) 89 (2004), no. 2, 390–426. MR 2078704, DOI 10.1112/S0024611504014686
- Matthew Daws, Categorical aspects of quantum groups: multipliers and intrinsic groups, Canad. J. Math. 68 (2016), no. 2, 309–333. MR 3484369, DOI 10.4153/CJM-2015-022-0
- Matthew Daws, PawełKasprzak, Adam Skalski, and Piotr M. Sołtan, Closed quantum subgroups of locally compact quantum groups, Adv. Math. 231 (2012), no. 6, 3473–3501. MR 2980506, DOI 10.1016/j.aim.2012.09.002
- Jacques Delaporte and Antoine Derighetti, Invariant projections and convolution operators, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1427–1435. MR 1814169, DOI 10.1090/S0002-9939-00-05874-3
- Antoine Derighetti, Conditional expectations on $CV_p(G)$. Applications, J. Funct. Anal. 247 (2007), no. 1, 231–251. MR 2319760, DOI 10.1016/j.jfa.2007.03.003
- Pieter Desmedt, Johan Quaegebeur, and Stefaan Vaes, Amenability and the bicrossed product construction, Illinois J. Math. 46 (2002), no. 4, 1259–1277. MR 1988262
- Edward G. Effros and Akitaka Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257–276. MR 891774, DOI 10.1512/iumj.1987.36.36015
- B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286–304. MR 1996874, DOI 10.1016/S0022-1236(02)00121-0
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482
- Mehrdad Kalantar and Matthias Neufang, From quantum groups to groups, Canad. J. Math. 65 (2013), no. 5, 1073–1094. MR 3095007, DOI 10.4153/CJM-2012-047-x
- Eberhard Kaniuth and Anthony T. Lau, A separation property of positive definite functions on locally compact groups and applications to Fourier algebras, J. Funct. Anal. 175 (2000), no. 1, 89–110. MR 1774852, DOI 10.1006/jfan.2000.3612
- PawełKasprzak and Piotr M. Sołtan, Embeddable quantum homogeneous spaces, J. Math. Anal. Appl. 411 (2014), no. 2, 574–591. MR 3128415, DOI 10.1016/j.jmaa.2013.07.084
- Johan Kustermans and Stefaan Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68–92. MR 1951446, DOI 10.7146/math.scand.a-14394
- Horst Leptin, Sur l’algèbre de Fourier d’un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180–A1182 (French). MR 239002
- S. Vaes, Locally Compact Quantum Groups. Ph.D. thesis, K.U. Leuven, 2000.
- Stefaan Vaes, A new approach to induction and imprimitivity results, J. Funct. Anal. 229 (2005), no. 2, 317–374. MR 2182592, DOI 10.1016/j.jfa.2004.11.016
- Alfons Van Daele, Locally compact quantum groups. A von Neumann algebra approach, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 082, 41. MR 3261862, DOI 10.3842/SIGMA.2014.082
Bibliographic Information
- Jason Crann
- Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
- Email: jcrann@math.carleton.ca
- Received by editor(s): March 11, 2016
- Published electronically: October 18, 2016
- Communicated by: Adrian Ioana
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 627-635
- MSC (2010): Primary 46M10, 43A07; Secondary 47L25, 46L89
- DOI: https://doi.org/10.1090/proc/13365
- MathSciNet review: 3577866