On complete metrizability of the Hausdorff metric topology
HTML articles powered by AMS MathViewer
- by László Zsilinszky
- Proc. Amer. Math. Soc. 145 (2017), 2281-2289
- DOI: https://doi.org/10.1090/proc/13366
- Published electronically: November 18, 2016
- PDF | Request permission
Abstract:
It is shown that there exists a nonseparable completely metrizable bounded metric space $(X,d)$ such that the hyperspace $CL(X)$ of the nonempty closed subsets of $X$ endowed with the Hausdorff metric $H_d$ is not completely metrizable.References
- Jean-Pierre Aubin, Applied abstract analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Exercises by Bernard Cornet and Hervé Moulin; Translated from the French by Carole Labrousse. MR 0470034
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperspaces are homeomorphic to $l_2$, Colloq. Math. 113 (2008), no. 2, 223–229. MR 2425083, DOI 10.4064/cm113-2-4
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Gerald Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1123–1133. MR 1065940, DOI 10.1090/S0002-9939-1991-1065940-6
- Gerald Beer and Giuseppe Di Maio, Confinal completeness of the Hausdorff metric topology, Fund. Math. 208 (2010), no. 1, 75–85. MR 2609221, DOI 10.4064/fm208-1-5
- H. R. Bennett, D. J. Lutzer, and G. M. Reed, Domain representability and the Choquet game in Moore and BCO-spaces, Topology Appl. 155 (2008), no. 5, 445–458. MR 2380929, DOI 10.1016/j.topol.2007.10.005
- J. Chaber and R. Pol, Note on the Wijsman hyperspaces of completely metrizable spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 3, 827–832 (English, with English and Italian summaries). MR 1934383
- Gustave Choquet, Lectures on analysis. Vol. I: Integration and topological vector spaces, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 0250011
- C. Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2569–2574. MR 1273484, DOI 10.1090/S0002-9939-1995-1273484-5
- Camillo Costantini, On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3393–3396. MR 1618729, DOI 10.1090/S0002-9939-98-04956-9
- Camillo Costantini, Sandro Levi, and Jan Pelant, Compactness and local compactness in hyperspaces, Topology Appl. 123 (2002), no. 3, 573–608. MR 1924053, DOI 10.1016/S0166-8641(01)00222-X
- Jiling Cao and A. H. Tomita, The Wijsman hyperspace of a metric hereditarily Baire space is Baire, Topology Appl. 157 (2010), no. 1, 145–151. MR 2556089, DOI 10.1016/j.topol.2009.04.039
- G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), no. 3, 199–206 (French, with English summary). MR 962541, DOI 10.4064/fm-129-3-199-206
- François G. Dorais and Carl Mummert, Stationary and convergent strategies in Choquet games, Fund. Math. 209 (2010), no. 1, 59–79. MR 2652592, DOI 10.4064/fm209-1-5
- Edward G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929–931. MR 181983, DOI 10.1090/S0002-9939-1965-0181983-3
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 73. MR 431104
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Keye Martin, Topological games in domain theory, Topology Appl. 129 (2003), no. 2, 177–186. MR 1961398, DOI 10.1016/S0166-8641(02)00147-5
- John C. Oxtoby, The Banach-Mazur game and Banach category theorem, Contributions to the theory of games, vol. 3, Annals of Mathematics Studies, no. 39, Princeton University Press, Princeton, N.J., 1957, pp. 159–163. MR 0093741
- E. Porada, Jeu de Choquet, Colloq. Math. 42 (1979), 345–353 (French). MR 567573, DOI 10.4064/cm-42-1-345-353
- Rastislav Telgársky, Remarks on a game of Choquet, Colloq. Math. 51 (1987), 365–372. MR 891306, DOI 10.4064/cm-51-1-365-372
- H. E. White Jr., Topological spaces that are $\alpha$-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477–482. MR 367941, DOI 10.1090/S0002-9939-1975-0367941-0
- László Zsilinszky, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3763–3765. MR 1458275, DOI 10.1090/S0002-9939-98-04526-2
- László Zsilinszky, On $\beta$-favorability of the strong Choquet game, Colloq. Math. 125 (2011), no. 2, 233–243. MR 2871316, DOI 10.4064/cm125-2-8
Bibliographic Information
- László Zsilinszky
- Affiliation: Department of Mathematics and Computer Science, The University of North Carolina at Pembroke, Pembroke, North Carolina 28372
- MR Author ID: 331579
- Email: laszlo@uncp.edu
- Received by editor(s): March 4, 2014
- Received by editor(s) in revised form: July 11, 2016
- Published electronically: November 18, 2016
- Communicated by: Ken Ono
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2281-2289
- MSC (2010): Primary 54B20; Secondary 54E50, 54E52, 91A44
- DOI: https://doi.org/10.1090/proc/13366
- MathSciNet review: 3611337