Derivatives of inner functions in weighted Bergman spaces and the Schwarz-Pick lemma
HTML articles powered by AMS MathViewer
- by Fernando Pérez-González and Jouni Rättyä
- Proc. Amer. Math. Soc. 145 (2017), 2155-2166
- DOI: https://doi.org/10.1090/proc/13384
- Published electronically: November 21, 2016
- PDF | Request permission
Abstract:
We characterize those radial doubling weights $\omega$ for which the Schwarz-Pick lemma applied to the derivative of any inner function in the norm of the Bergman space $A^p_\omega$ does not cause any essential loss of information. The approach we employ is based on operator theory and leads to a characterization of when the linear average operator \[ T(f)(z)=\frac {\int _{|z|}^1f\left (s\frac {z}{|z|}\right ) ds}{1-|z|} \] is bounded from $A^p_\omega$ to $L^p_\omega$. The characterizing integral condition is self-improving and therefore $T:A^p_\omega \to L^p_\omega$ is bounded if and only if $T:A^{p-\varepsilon }_\omega \to L^{p-\varepsilon }_\omega$ is bounded for all sufficiently small $\varepsilon >0$. This study also reveals the fact that, under appropriate hypothesis on $\omega$, the average operator $T:A^p_\omega \to L^p_\omega$ is bounded if and only if the Bergman projection $P:L^p_\omega \to L^p_\omega$ is bounded if and only if the classical Hilbert operator $\mathcal {H}:L^{p+1}_{\widehat {\omega }}([0,1))\to A^{p+1}_\omega$ is bounded, where $\widehat {\omega }(r)=\int _r^1\omega (s) ds$.References
- Patrick Ahern, The mean modulus and the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311–347. MR 523107, DOI 10.1512/iumj.1979.28.28022
- Patrick Ahern, The Poisson integral of a singular measure, Canad. J. Math. 35 (1983), no. 4, 735–749. MR 723040, DOI 10.4153/CJM-1983-042-0
- P. R. Ahern and D. N. Clark, On inner functions with $H^{p}$-derivative, Michigan Math. J. 21 (1974), 115–127. MR 344479
- P. R. Ahern and D. N. Clark, On inner functions with $B^{p}$ derivative, Michigan Math. J. 23 (1976), no. 2, 107–118. MR 414884
- Alexandru Aleman and Dragan Vukotić, On Blaschke products with derivatives in Bergman spaces with normal weights, J. Math. Anal. Appl. 361 (2010), no. 2, 492–505. MR 2568713, DOI 10.1016/j.jmaa.2009.07.030
- Anton Baranov and Rachid Zaraouf, Boundedness of the differentiation operator in the model spaces and application to Peller type inequalities, https:// arxiv.org/abs/1407.6347.
- David Bekollé and Aline Bonami, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A775–A778 (French, with English summary). MR 497663
- Joseph A. Cima and Artur Nicolau, Inner functions with derivatives in the weak Hardy space, Proc. Amer. Math. Soc. 143 (2015), no. 2, 581–594. MR 3283646, DOI 10.1090/S0002-9939-2014-12305-7
- William S. Cohn, On the $H^{p}$ classes of derivatives of functions orthogonal to invariant subspaces, Michigan Math. J. 30 (1983), no. 2, 221–229. MR 718268
- Peter Colwell, Blaschke products, University of Michigan Press, Ann Arbor, MI, 1985. Bounded analytic functions. MR 779463
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Konstantin M. Dyakonov, A reverse Schwarz-Pick inequality, Comput. Methods Funct. Theory 13 (2013), no. 3, 449–457. MR 3102647, DOI 10.1007/s40315-013-0029-8
- Emmanuel Fricain and Javad Mashreghi, Integral means of the derivatives of Blaschke products, Glasg. Math. J. 50 (2008), no. 2, 233–249. MR 2417618, DOI 10.1017/S0017089508004175
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Daniel Girela, Cristóbal González, and Miroljub Jevtić, Inner functions in Lipschitz, Besov, and Sobolev spaces, Abstr. Appl. Anal. , posted on (2011), Art. ID 626254, 26. MR 2802834, DOI 10.1155/2011/626254
- Daniel Girela and José Ángel Peláez, On the derivative of infinite Blaschke products, Illinois J. Math. 48 (2004), no. 1, 121–130. MR 2048218
- Daniel Girela and José Ángel Peláez, On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain, Canad. Math. Bull. 49 (2006), no. 3, 381–388. MR 2252260, DOI 10.4153/CMB-2006-038-x
- Daniel Girela, José Ángel Peláez, and Dragan Vukotić, Integrability of the derivative of a Blaschke product, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 673–687. MR 2360523, DOI 10.1017/S0013091504001014
- Alan Gluchoff, The mean modulus of a Blaschke product with zeroes in a nontangential region, Complex Variables Theory Appl. 1 (1983), no. 4, 311–326. MR 706988, DOI 10.1080/17476938308814022
- Alan Gluchoff, On inner functions with derivative in Bergman spaces, Illinois J. Math. 31 (1987), no. 3, 518–528. MR 892184
- Yasuhiro Gotoh, On integral means of the derivatives of Blaschke products, Kodai Math. J. 30 (2007), no. 1, 147–155. MR 2319084, DOI 10.2996/kmj/1175287629
- Janne Gröhn and Artur Nicolau, Inner functions in weak Besov spaces, J. Funct. Anal. 266 (2014), no. 6, 3685–3700. MR 3165238, DOI 10.1016/j.jfa.2013.11.006
- Hong Oh Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), no. 1, 175–190. MR 755488
- Mirwan Amin Kutbi, Integral means for the first derivative of Blaschke products, Kodai Math. J. 24 (2001), no. 1, 86–97. MR 1813721, DOI 10.2996/kmj/1106157298
- Javad Mashreghi, Derivatives of inner functions, Fields Institute Monographs, vol. 31, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. MR 2986324, DOI 10.1007/978-1-4614-5611-7
- Miodrag Mateljević and Miroslav Pavlović, On the integral means of derivatives of the atomic function, Proc. Amer. Math. Soc. 86 (1982), no. 3, 455–458. MR 671214, DOI 10.1090/S0002-9939-1982-0671214-X
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- José Ángel Peláez, Sharp results on the integrability of the derivative of an interpolating Blaschke product, Forum Math. 20 (2008), no. 6, 1039–1054. MR 2479288, DOI 10.1515/FORUM.2008.046
- José Ángel Peláez and Jouni Rättyä, Generalized Hilbert operators on weighted Bergman spaces, Adv. Math. 240 (2013), 227–267. MR 3046308, DOI 10.1016/j.aim.2013.03.006
- José Ángel Peláez and Jouni Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124. MR 3155774
- José Ángel Peláez and Jouni Rättyä, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9) 105 (2016), no. 1, 102–130 (English, with English and French summaries). MR 3427941, DOI 10.1016/j.matpur.2015.10.001
- José Ángel Peláez and Jouni Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), no. 1-2, 205–239. MR 3343875, DOI 10.1007/s00208-014-1108-5
- José Ángel Peláez, Jouni Rättyä, and Kian Sierra, Embedding Bergman spaces into tent spaces, Math. Z. 281 (2015), no. 3-4, 1215–1237. MR 3421661, DOI 10.1007/s00209-015-1528-2
- David Protas, Blaschke products with derivative in $H^{p}$ and $B^{p}$, Michigan Math. J. 20 (1973), 393–396. MR 344478
- David Protas, Blaschke products with derivative in function spaces, Kodai Math. J. 34 (2011), no. 1, 124–131. MR 2786785, DOI 10.2996/kmj/1301576766
- A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MR 283559, DOI 10.1090/S0002-9947-1971-0283559-3
Bibliographic Information
- Fernando Pérez-González
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
- MR Author ID: 137985
- Email: fernando.perez.gonzalez@ull.es
- Jouni Rättyä
- Affiliation: Department of Mathematics, University of Eastern Finland, P.O.Box 111, 80101 Joensuu, Finland
- MR Author ID: 686390
- Email: jouni.rattya@uef.fi
- Received by editor(s): June 8, 2016
- Received by editor(s) in revised form: July 15, 2016
- Published electronically: November 21, 2016
- Additional Notes: This research was supported in part by Ministerio de Economia y Competitividad, Spain, projects MTM2011-26538 and MTM2014-52685-P and Academy of Finland project no. 268009, and the Faculty of Science and Forestry of University of Eastern Finland project no. 930349
- Communicated by: Stephan Ramon Garcia
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2155-2166
- MSC (2010): Primary 30H20, 30J05
- DOI: https://doi.org/10.1090/proc/13384
- MathSciNet review: 3611328