On the remainder term of the Berezin inequality on a convex domain
HTML articles powered by AMS MathViewer
- by Simon Larson
- Proc. Amer. Math. Soc. 145 (2017), 2167-2181
- DOI: https://doi.org/10.1090/proc/13386
- Published electronically: November 18, 2016
- PDF | Request permission
Abstract:
We study the Dirichlet eigenvalues of the Laplacian on a convex domain in $\mathbb {R}^n$, with $n\geq 2$. In particular, we generalize and improve upper bounds for the Riesz means of order $\sigma \geq 3/2$ established in an article by Geisinger, Laptev and Weidl. This is achieved by refining estimates for a negative second term in the Berezin inequality. The obtained remainder term reflects the correct order of growth in the semi-classical limit and depends only on the measure of the boundary of the domain. We emphasize that such an improvement is for general $\Omega \subset \mathbb {R}^n$ not possible and was previously known to hold only for planar convex domains satisfying certain geometric conditions.
As a corollary we obtain lower bounds for the individual eigenvalues $\lambda _k$, which for a certain range of $k$ improves the Li–Yau inequality for convex domains. However, for convex domains one can by using different methods obtain even stronger lower bounds for $\lambda _k$.
References
- Michael Aizenman and Elliott H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. A 66 (1978), no. 6, 427–429. MR 598768, DOI 10.1016/0375-9601(78)90385-7
- F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167 (Russian). MR 0350504
- R. Courant and D. Hilbert, Methoden der mathematischen Physik. 1. Band. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 12.), Berlin: J. Springer, gr. $8^\circ$, XIII, 450 S (1924), 1924.
- Rupert L. Frank and Leander Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, Mathematical results in quantum physics, World Sci. Publ., Hackensack, NJ, 2011, pp. 138–147. MR 2885166, DOI 10.1142/9789814350365_{0}012
- Leander Geisinger, Ari Laptev, and Timo Weidl, Geometrical versions of improved Berezin-Li-Yau inequalities, J. Spectr. Theory 1 (2011), no. 1, 87–109. MR 2820887, DOI 10.4171/JST/4
- L. Geisinger and T. Weidl, Universal bounds for traces of the Dirichlet Laplace operator, J. Lond. Math. Soc. (2) 82 (2010), no. 2, 395–419. MR 2725046, DOI 10.1112/jlms/jdq033
- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 609014, DOI 10.1007/BF02391913
- V. Ja. Ivriĭ, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25–34 (Russian). MR 575202
- Victor Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1631419, DOI 10.1007/978-3-662-12496-3
- Hynek Kovařík, Semjon Vugalter, and Timo Weidl, Two-dimensional Berezin-Li-Yau inequalities with a correction term, Comm. Math. Phys. 287 (2009), no. 3, 959–981. MR 2486669, DOI 10.1007/s00220-008-0692-1
- A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal. 151 (1997), no. 2, 531–545. MR 1491551, DOI 10.1006/jfan.1997.3155
- Ari Laptev and Timo Weidl, Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184 (2000), no. 1, 87–111. MR 1756570, DOI 10.1007/BF02392782
- Simon Larson, A bound for the perimeter of inner parallel bodies, J. Funct. Anal. 271 (2016), no. 3, 610–619. MR 3506959, DOI 10.1016/j.jfa.2016.02.022
- Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919
- Antonios D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003), no. 2, 631–636. MR 1933356, DOI 10.1090/S0002-9939-02-06834-X
- G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419–433. MR 129219, DOI 10.1112/plms/s3-11.1.419
- M. H. Protter, A lower bound for the fundamental frequency of a convex region, Proc. Amer. Math. Soc. 81 (1981), no. 1, 65–70. MR 589137, DOI 10.1090/S0002-9939-1981-0589137-2
- Yu. Safarov and D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, vol. 155, American Mathematical Society, Providence, RI, 1997. Translated from the Russian manuscript by the authors. MR 1414899, DOI 10.1090/mmono/155
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Hajime Urakawa, Lower bounds for the eigenvalues of the fixed vibrating membrane problems, Tohoku Math. J. (2) 36 (1984), no. 2, 185–189. MR 742593, DOI 10.2748/tmj/1178228846
- M. van den Berg, A uniform bound on trace$\,(e^{t\Delta })$ for convex regions in $\textbf {R}^{n}$ with smooth boundaries, Comm. Math. Phys. 92 (1984), no. 4, 525–530. MR 736409
- Timo Weidl, Improved Berezin-Li-Yau inequalities with a remainder term, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2, vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 253–263. MR 2509788, DOI 10.1090/trans2/225/17
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
Bibliographic Information
- Simon Larson
- Affiliation: Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Email: simla@math.kth.se
- Received by editor(s): December 15, 2015
- Received by editor(s) in revised form: December 31, 2015, July 13, 2016, and July 15, 2016
- Published electronically: November 18, 2016
- Communicated by: Michael Hitrik
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2167-2181
- MSC (2010): Primary 35P15; Secondary 47A75
- DOI: https://doi.org/10.1090/proc/13386
- MathSciNet review: 3611329