## Differentiation of Besov spaces and the Nikodym maximal operator

HTML articles powered by AMS MathViewer

- by Jason Murcko PDF
- Proc. Amer. Math. Soc.
**145**(2017), 2139-2153 Request permission

## Abstract:

We study several questions related to differentiation of integrals for Besov spaces relative to the basis $\mathcal {R}$ of arbitrarily oriented rectangular parallelepipeds in $\mathbb {R}^{d}$, $d \geq 2$. We improve on positive and negative differentiation results of Aimar, Forzani, and Naibo and on capacitary and dimensional bounds for exceptional sets of Naibo. Our main tool in obtaining these improvements involves showing that bounds for the Nikodym maximal operator can be used to deduce boundedness properties of the local maximal operator associated to $\mathcal {R}$.## References

- David R. Adams and Lars Inge Hedberg,
*Function spaces and potential theory*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR**1411441**, DOI 10.1007/978-3-662-03282-4 - Hugo Aimar, Liliana Forzani, and Virginia Naibo,
*Rectangular differentiation of integrals of Besov functions*, Math. Res. Lett.**9**(2002), no. 2-3, 173–189. MR**1909636**, DOI 10.4310/MRL.2002.v9.n2.a4 - Thomas Bagby and William P. Ziemer,
*Pointwise differentiability and absolute continuity*, Trans. Amer. Math. Soc.**191**(1974), 129–148. MR**344390**, DOI 10.1090/S0002-9947-1974-0344390-6 - J. Bourgain,
*Besicovitch type maximal operators and applications to Fourier analysis*, Geom. Funct. Anal.**1**(1991), no. 2, 147–187. MR**1097257**, DOI 10.1007/BF01896376 - Michael Christ,
*Estimates for the $k$-plane transform*, Indiana Univ. Math. J.**33**(1984), no. 6, 891–910. MR**763948**, DOI 10.1512/iumj.1984.33.33048 - Antonio Cordoba,
*The Kakeya maximal function and the spherical summation multipliers*, Amer. J. Math.**99**(1977), no. 1, 1–22. MR**447949**, DOI 10.2307/2374006 - A. Nagel, E. M. Stein, and S. Wainger,
*Differentiation in lacunary directions*, Proc. Nat. Acad. Sci. U.S.A.**75**(1978), no. 3, 1060–1062. MR**466470**, DOI 10.1073/pnas.75.3.1060 - Virginia Naibo,
*Bessel capacities and rectangular differentiation in Besov spaces*, J. Math. Anal. Appl.**324**(2006), no. 2, 834–840. MR**2265084**, DOI 10.1016/j.jmaa.2005.12.071 - Otton Nikodým,
*Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles*, Fund. Math.**10**(1927), no. 1, 116–168. - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - A. M. Stokolos,
*On the differentiation of integrals by bases that do not possess the density property*, Mat. Sb.**187**(1996), no. 7, 113–138 (Russian, with Russian summary); English transl., Sb. Math.**187**(1996), no. 7, 1061–1085. MR**1404191**, DOI 10.1070/SM1996v187n07ABEH000148 - A. M. Stokolos,
*On differentiation of integrals with respect to bases of convex sets*, Studia Math.**119**(1996), no. 2, 99–108. MR**1391470**, DOI 10.4064/sm-119-2-99-108 - Terence Tao,
*The Bochner-Riesz conjecture implies the restriction conjecture*, Duke Math. J.**96**(1999), no. 2, 363–375. MR**1666558**, DOI 10.1215/S0012-7094-99-09610-2 - Hans Triebel,
*Theory of function spaces*, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR**781540**, DOI 10.1007/978-3-0346-0416-1 - Thomas Wolff,
*An improved bound for Kakeya type maximal functions*, Rev. Mat. Iberoamericana**11**(1995), no. 3, 651–674. MR**1363209**, DOI 10.4171/RMI/188

## Additional Information

**Jason Murcko**- Affiliation: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, Wisconsin 53706
- Email: jmurcko@gmail.com
- Received by editor(s): July 11, 2016
- Published electronically: December 30, 2016
- Additional Notes: The author would like to thank his advisor, Andreas Seeger, for his guidance and support

The author was supported in part by the National Science Foundation. - Communicated by: Alexander Iosevich
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**145**(2017), 2139-2153 - MSC (2010): Primary 42B25, 42B35
- DOI: https://doi.org/10.1090/proc/13396
- MathSciNet review: 3611327