The cycline subalgebra of a Kumjian-Pask algebra
HTML articles powered by AMS MathViewer
- by Lisa Orloff Clark, Cristóbal Gil Canto and Alireza Nasr-Isfahani
- Proc. Amer. Math. Soc. 145 (2017), 1969-1980
- DOI: https://doi.org/10.1090/proc/13439
- Published electronically: November 21, 2016
- PDF | Request permission
Abstract:
Let $\Lambda$ be a row-finite higher-rank graph with no sources. We identify a maximal commutative subalgebra $\mathcal {M}$ inside the Kumjian-Pask algebra $\mathrm {KP}_R(\Lambda )$. We also prove a generalized Cuntz-Krieger uniqueness theorem for Kumjian-Pask algebras which says that a representation of $\mathrm {KP}_R(\Lambda )$ is injective if and only if it is injective on $\mathcal {M}$.References
- Gene Abrams and Gonzalo Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), no. 2, 319–334. MR 2172342, DOI 10.1016/j.jalgebra.2005.07.028
- Gonzalo Aranda Pino, John Clark, Astrid an Huef, and Iain Raeburn, Kumjian-Pask algebras of higher-rank graphs, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3613–3641. MR 3042597, DOI 10.1090/S0002-9947-2013-05717-0
- P. Ara, M. A. Moreno, and E. Pardo, Nonstable $K$-theory for graph algebras, Algebr. Represent. Theory 10 (2007), no. 2, 157–178. MR 2310414, DOI 10.1007/s10468-006-9044-z
- Jonathan H. Brown and Astrid an Huef, The socle and semisimplicity of a Kumjian-Pask algebra, Comm. Algebra 43 (2015), no. 7, 2703–2723. MR 3354056, DOI 10.1080/00927872.2014.888560
- Jonathan H. Brown and Astrid an Huef, Centers of algebras associated to higher-rank graphs, Rev. Mat. Iberoam. 30 (2014), no. 4, 1387–1396. MR 3293437, DOI 10.4171/RMI/818
- Jonathan H. Brown, Gabriel Nagy, and Sarah Reznikoff, A generalized Cuntz-Krieger uniqueness theorem for higher-rank graphs, J. Funct. Anal. 266 (2014), no. 4, 2590–2609. MR 3150172, DOI 10.1016/j.jfa.2013.08.020
- Lisa Orloff Clark, Claire Flynn, and Astrid an Huef, Kumjian-Pask algebras of locally convex higher-rank graphs, J. Algebra 399 (2014), 445–474. MR 3144598, DOI 10.1016/j.jalgebra.2013.09.041
- L. O. Clark and Y. E. P. Pangalela, Kumjian-Pask algebras of finitely-aligned higher-rank graphs, arXiv:1512.06547.
- C. Gil Canto and A. Nasr-Isfahani, The maximal commutative subalgebra of a Leavitt path algebra, arXiv:1510.03992.
- Alex Kumjian and David Pask, Higher rank graph $C^\ast$-algebras, New York J. Math. 6 (2000), 1–20. MR 1745529
- W. G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8 (1957), 322–328. MR 83986, DOI 10.1090/S0002-9939-1957-0083986-1
- Guyan Robertson and Tim Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115–144. MR 1713322, DOI 10.1515/crll.1999.057
- Dilian Yang, Cycline subalgebras of $k$-graph $C^*$-algebras, Proc. Amer. Math. Soc. 144 (2016), no. 7, 2959–2969. MR 3487228, DOI 10.1090/proc/12939
Bibliographic Information
- Lisa Orloff Clark
- Affiliation: Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MR Author ID: 624226
- Email: lclark@maths.otago.ac.nz
- Cristóbal Gil Canto
- Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071, Málaga, Spain
- Email: cristogilcanto@gmail.com; cgilc@uma.es
- Alireza Nasr-Isfahani
- Affiliation: Department of Mathematics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran – and – School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
- MR Author ID: 634713
- Email: nasr_a@sci.ui.ac.ir; nasr@ipm.ir
- Received by editor(s): March 2, 2016
- Received by editor(s) in revised form: July 5, 2016
- Published electronically: November 21, 2016
- Communicated by: Jerzy Weyman
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 1969-1980
- MSC (2010): Primary 16S10
- DOI: https://doi.org/10.1090/proc/13439
- MathSciNet review: 3611313