Distortion of imbeddings of groups of intermediate growth into metric spaces
HTML articles powered by AMS MathViewer
- by Laurent Bartholdi and Anna Erschler
- Proc. Amer. Math. Soc. 145 (2017), 1943-1952
- DOI: https://doi.org/10.1090/proc/13453
- Published electronically: December 15, 2016
Abstract:
We show that groups of subexponential growth can have arbitrarily bad distortion for their imbeddings into Hilbert space.
More generally, consider a metric space $\mathcal X$, and assume that it admits a sequence of finite groups of bounded-size generating set which does not imbed coarsely in $\mathcal X$. Then, for every unbounded increasing function $\rho$, we produce a group of subexponential word growth all of whose imbeddings in $\mathcal X$ have distortion worse than $\rho$.
This implies that Liouville groups may have arbitrarily bad distortion for their imbeddings into Hilbert space, precluding a converse to the result by Naor and Peres that groups with distortion much better than $\sqrt t$ are Liouville.
References
- Goulnara Arzhantseva, Cornelia Druţu, and Mark Sapir, Compression functions of uniform embeddings of groups into Hilbert and Banach spaces, J. Reine Angew. Math. 633 (2009), 213–235. MR 2561202, DOI 10.1515/CRELLE.2009.066
- André Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris Sér. A 279 (1974), 25–28 (French). MR 353405
- Laurent Bartholdi and Anna Erschler, Growth of permutational extensions, Invent. Math. 189 (2012), no. 2, 431–455. MR 2947548, DOI 10.1007/s00222-011-0368-x
- Laurent Bartholdi and Anna Erschler, Imbeddings into groups of intermediate growth, Groups Geom. Dyn. 8 (2014), no. 3, 605–620. MR 3267517, DOI 10.4171/GGD/241
- Laurent Bartholdi and Anna Erschler, Poisson-Furstenberg boundary and growth of groups, Prob. Theory Rel. Fields , posted on (2016), available at arXiv:math/1107.5499., DOI 10.1007/s00440-016-0712-6
- M. E. B. Bekka, P.-A. Cherix, and A. Valette, Proper affine isometric actions of amenable groups, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 1–4. MR 1388307, DOI 10.1017/CBO9780511629365.003
- Anna Erschler, Piecewise automatic groups, Duke Math. J. 134 (2006), no. 3, 591–613. MR 2254627, DOI 10.1215/S0012-7094-06-13435-X
- Antoine Gournay, The Liouville property via Hilbertian compression, to appear in Ann. Inst. Fourier.
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985 (Russian). MR 764305
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Misha Gromov, Spaces and questions, Geom. Funct. Anal. Special Volume (2000), 118–161. GAFA 2000 (Tel Aviv, 1999). MR 1826251, DOI 10.1007/978-3-0346-0422-2_{5}
- Vadim A. Kaimanovich, “Münchhausen trick” and amenability of self-similar groups, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 907–937. MR 2197814, DOI 10.1142/S0218196705002694
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Vincent Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (2008), no. 3, 559–602 (French, with English and French summaries). MR 2423763, DOI 10.1215/00127094-2008-029
- Vincent Lafforgue, Propriété (T) renforcée banachique et transformation de Fourier rapide, J. Topol. Anal. 1 (2009), no. 3, 191–206 (French, with English summary). MR 2574023, DOI 10.1142/S1793525309000163
- G. A. Margulis, Explicit constructions of expanders, Problemy Peredači Informacii 9 (1973), no. 4, 71–80 (Russian). MR 0484767
- Assaf Naor and Yuval Peres, Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 076, 34. MR 2439557, DOI 10.1093/imrn/rnn076
- Alexander Yu. Olshanskii and Denis V. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J. 162 (2013), no. 9, 1621–1648. MR 3079257, DOI 10.1215/00127094-2266251
- Romain Tessera, Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Comment. Math. Helv. 86 (2011), no. 3, 499–535. MR 2803851, DOI 10.4171/CMH/232
- Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100, DOI 10.1017/CBO9780511470967
Bibliographic Information
- Laurent Bartholdi
- Affiliation: Département de mathématiques et applications, École Normale Supérieure, Paris, France – and – Mathematisches Institut, Georg-August Universität, Göttingen, Germany
- Email: laurent.bartholdi@gmail.com
- Anna Erschler
- Affiliation: C.N.R.S., Département de mathématiques et applications, École Normale Supérieure, Paris, France
- Email: anna.erschler@ens.fr
- Received by editor(s): March 19, 2015
- Received by editor(s) in revised form: July 4, 2016
- Published electronically: December 15, 2016
- Additional Notes: This work was supported by the ERC starting grant 257110 “RaWG”, the ANR “DiscGroup: facettes des groupes discrets”, the ANR “@raction” grant ANR-14-ACHN-0018-01, the Centre International de Mathématiques et Informatique, Toulouse, and the Institut Henri Poincaré, Paris
- Communicated by: Kevin Whyte
- © Copyright 2016 by the authors
- Journal: Proc. Amer. Math. Soc. 145 (2017), 1943-1952
- MSC (2010): Primary 20F65; Secondary 51F99
- DOI: https://doi.org/10.1090/proc/13453
- MathSciNet review: 3611311