Trajectories escaping to infinity in finite time
HTML articles powered by AMS MathViewer
- by J. K. Langley
- Proc. Amer. Math. Soc. 145 (2017), 2107-2117
- DOI: https://doi.org/10.1090/proc/13377
- Published electronically: January 11, 2017
- PDF | Request permission
Abstract:
If the function $f$ is transcendental and meromorphic in the plane, and either $f$ has finitely many poles or its inverse function has a logarithmic singularity over $\infty$, then the equation $\dot z = f(z)$ has infinitely many trajectories tending to infinity in finite increasing time.References
- Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373. MR 1344897, DOI 10.4171/RMI/176
- Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 368–400. MR 2439666, DOI 10.1112/plms/pdn007
- Louis Brickman and E. S. Thomas, Conformal equivalence of analytic flows, J. Differential Equations 25 (1977), no. 3, 310–324. MR 447674, DOI 10.1016/0022-0396(77)90047-X
- Kevin A. Broughan, The structure of sectors of zeros of entire flows, Proceedings of the 17th Summer Conference on Topology and its Applications, 2003, pp. 379–394. MR 2077797
- Antonio Garijo, Armengol Gasull, and Xavier Jarque, Local and global phase portrait of equation $\dot z=f(z)$, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 309–329. MR 2257435, DOI 10.3934/dcds.2007.17.309
- Gary G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88–104. MR 921748, DOI 10.1112/jlms/s2-37.121.88
- Otomar Hájek, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J. 16(91) (1966), 14–27 (English, with Russian summary). MR 194661
- Otomar Hájek, Notes on meromorphic dynamical systems. II, Czechoslovak Math. J. 16 (91) (1966), 28–35 (English, with Russian summary). MR 0194662
- Otomar Hájek, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J. 16(91) (1966), 36–40 (English, with Russian summary). MR 194663
- W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317–358. MR 385095, DOI 10.4153/CMB-1974-064-0
- W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
- D. J. Needham and A. C. King, On meromorphic complex differential equations, Dynam. Stability Systems 9 (1994), no. 2, 99–122. MR 1287510, DOI 10.1080/02681119408806171
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
Bibliographic Information
- J. K. Langley
- Affiliation: School of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kingdom
- MR Author ID: 110110
- Email: james.langley@nottingham.ac.uk
- Received by editor(s): May 11, 2016
- Received by editor(s) in revised form: July 4, 2016
- Published electronically: January 11, 2017
- Communicated by: Jeremy Tyson
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2107-2117
- MSC (2010): Primary 30D30
- DOI: https://doi.org/10.1090/proc/13377
- MathSciNet review: 3611324