Heat content determines planar triangles
HTML articles powered by AMS MathViewer
- by Reed Meyerson and Patrick McDonald
- Proc. Amer. Math. Soc. 145 (2017), 2739-2748
- DOI: https://doi.org/10.1090/proc/13397
- Published electronically: December 9, 2016
- PDF | Request permission
Abstract:
We prove that the heat content determines planar triangles.References
- M. van den Berg and Peter B. Gilkey, Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120 (1994), no. 1, 48–71. MR 1262245, DOI 10.1006/jfan.1994.1022
- M. van den Berg and K. Gittins, On the heat content of a polygon, J. Geom. Anal. 26 (2016), no. 3, 2231–2264. MR 3511476, DOI 10.1007/s12220-015-9626-2
- M. van den Berg and S. Srisatkunarajah, Heat flow and Brownian motion for a region in $\textbf {R}^2$ with a polygonal boundary, Probab. Theory Related Fields 86 (1990), no. 1, 41–52. MR 1061947, DOI 10.1007/BF01207512
- M. van den Berg and S. Srisatkunarajah, Heat equation for a region in $\textbf {R}^2$ with a polygonal boundary, J. London Math. Soc. (2) 37 (1988), no. 1, 119–127. MR 921750, DOI 10.1112/jlms/s2-37.121.119
- Khristo N. Boyadzhiev and Victor H. Moll, The integrals in Gradshteyn and Ryzhik. Part 21: Hyperbolic functions, Sci. Ser. A Math. Sci. (N.S.) 22 (2012), 109–127. MR 3058913
- C. Durso Solution of the inverse spectral problem for triangles, Ph.D. thesis, MIT 1988.
- P. Gilkey, Heat content, heat trace, and isospectrality, New developments in Lie theory and geometry, Contemp. Math., vol. 491, Amer. Math. Soc., Providence, RI, 2009, pp. 115–123. MR 2537053, DOI 10.1090/conm/491/09611
- Daniel Grieser and Svenja Maronna, Hearing the shape of a triangle, Notices Amer. Math. Soc. 60 (2013), no. 11, 1440–1447. MR 3154630, DOI 10.1090/noti1063
- Patrick McDonald and Robert Meyers, Dirichlet spectrum and heat content, J. Funct. Anal. 200 (2003), no. 1, 150–159. MR 1974092, DOI 10.1016/S0022-1236(02)00076-9
Bibliographic Information
- Reed Meyerson
- Affiliation: Department of Mathematics, New College of Florida, Sarasota, Florida 34243
- Email: reed.meyerson12@ncf.edu
- Patrick McDonald
- Affiliation: Department of Mathematics, New College of Florida, Sarasota, Florida 34243
- Email: mcdonald@ncf.edu
- Received by editor(s): June 1, 2016
- Received by editor(s) in revised form: July 21, 2016
- Published electronically: December 9, 2016
- Communicated by: Michael Hitrik
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2739-2748
- MSC (2010): Primary 58J50; Secondary 58J35, 58J65
- DOI: https://doi.org/10.1090/proc/13397
- MathSciNet review: 3626525