Existence of $1D$ vectorial Absolute Minimisers in $L^\infty$ under minimal assumptions
HTML articles powered by AMS MathViewer
- by Hussien Abugirda and Nikos Katzourakis
- Proc. Amer. Math. Soc. 145 (2017), 2567-2575
- DOI: https://doi.org/10.1090/proc/13421
- Published electronically: December 27, 2016
- PDF | Request permission
Abstract:
We prove the existence of vectorial Absolute Minimisers in the sense of Aronsson to the supremal functional $E_\infty (u,\Omega β)\!=\!\|\mathscr {L}(\cdot ,u,\mathrm {D} u)\|_{L^\infty (\Omega β)}$, $\Omega β\Subset \Omega$, applied to $W^{1,\infty }$ maps $u:\Omega \subseteq \mathbb {R}\longrightarrow \mathbb {R}^N$ with given boundary values. The assumptions on $\mathscr {L}$ are minimal, improving earlier existence results previously established by Barron-Jensen-Wang and by the second author.References
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\,F(x,\,f(x),\,f^{\prime } (x))$, Ark. Mat. 6 (1965), 33β53 (1965). MR 196551, DOI 10.1007/BF02591326
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\, F(x, f(x),f^\prime (x))$. II, Ark. Mat. 6 (1966), 409β431 (1966). MR 203541, DOI 10.1007/BF02590964
- Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551β561 (1967). MR 217665, DOI 10.1007/BF02591928
- Gunnar Aronsson, On the partial differential equation $u_{x}{}^{2}\!u_{xx} +2u_{x}u_{y}u_{xy}+u_{y}{}^{2}\!u_{yy}=0$, Ark. Mat. 7 (1968), 395β425 (1968). MR 237962, DOI 10.1007/BF02590989
- Gunnar Aronsson, Minimization problems for the functional $\textrm {sup}_{x}\,F(x,\,f(x),\,f^{\prime } \,(x))$. III, Ark. Mat. 7 (1969), 509β512. MR 240690, DOI 10.1007/BF02590888
- E. N. Barron, R. R. Jensen, and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Ration. Mech. Anal. 157 (2001), no.Β 4, 255β283. MR 1831173, DOI 10.1007/PL00004239
- E. N. Barron, R. R. Jensen, and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. Inst. H. PoincarΓ© C Anal. Non LinΓ©aire 18 (2001), no.Β 4, 495β517 (English, with English and French summaries). MR 1841130, DOI 10.1016/S0294-1449(01)00070-1
- J. Broecker, On variational data assimilation in continuous time, Quarterly Journal of the Royal Meteorological Society 136 (2010), 1906β1919.
- J. Broecker and I. Szendro, Sensitivity and out-of-sample error in continuous time data assimilation, Quarterly Journal of the Royal Meteorological Society 138 (2011), 785β801.
- Michael G. Crandall, A visit with the $\infty$-Laplace equation, Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math., vol. 1927, Springer, Berlin, 2008, pp.Β 75β122. MR 2408259, DOI 10.1007/978-3-540-75914-0_{3}
- G. Croce, N. Katzourakis, and G. Pisante, $\mathcal {D}$-solutions to the system of vectorial calculus of variations in $L^\infty$ via the Baire category method for the singular values, preprint.
- Nikolaos I. Katzourakis, $L^\infty$ variational problems for maps and the Aronsson PDE system, J. Differential Equations 253 (2012), no.Β 7, 2123β2139. MR 2946966, DOI 10.1016/j.jde.2012.05.012
- Nikolaos I. Katzourakis, $\infty$-minimal submanifolds, Proc. Amer. Math. Soc. 142 (2014), no.Β 8, 2797β2811. MR 3209334, DOI 10.1090/S0002-9939-2014-12039-9
- Nikos Katzourakis, On the structure of $\infty$-harmonic maps, Comm. Partial Differential Equations 39 (2014), no.Β 11, 2091β2124. MR 3251865, DOI 10.1080/03605302.2014.920351
- Nicholas Katzourakis, Explicit $2D$ $\infty$-harmonic maps whose interfaces have junctions and corners, C. R. Math. Acad. Sci. Paris 351 (2013), no.Β 17-18, 677β680 (English, with English and French summaries). MR 3124325, DOI 10.1016/j.crma.2013.07.028
- Nikos Katzourakis, Optimal $\infty$-quasiconformal immersions, ESAIM Control Optim. Calc. Var. 21 (2015), no.Β 2, 561β582. MR 3348412, DOI 10.1051/cocv/2014038
- Nikos Katzourakis, Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some linear elliptic systems, Commun. Pure Appl. Anal. 14 (2015), no.Β 1, 313β327. MR 3299040, DOI 10.3934/cpaa.2015.14.313
- Nikos Katzourakis, An introduction to viscosity solutions for fully nonlinear PDE with applications to calculus of variations in $L^\infty$, SpringerBriefs in Mathematics, Springer, Cham, 2015. MR 3289084, DOI 10.1007/978-3-319-12829-0
- N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, arXiv preprint, http://arxiv.org/pdf/1501.06164.pdf.
- N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial calculus of variations in $L^\infty$, arXiv preprint, http://arxiv.org/pdf/1502.01179.pdf.
- N. Katzourakis, A new characterisation of $\infty$-harmonic and $p$-harmonic maps via affine variations in $L^\infty$, arXiv preprint, http://arxiv.org/pdf/1509.01811.pdf.
- N. Katzourakis, Mollification of $\mathcal {D}$-solutions to fully nonlinear PDE systems, arXiv preprint, http://arxiv.org/pdf/1508.05519.pdf.
- N. Katzourakis, Solutions of vectorial Hamilton-Jacobi equations are rank-one Absolute Minimisers in $L^\infty$, arXiv preprint, http://arxiv.org/pdf/1604.00802.pdf.
- N. Katzourakis and T. Pryer, On the numerical approximation of $\infty$-harmonic mappings, arXiv preprint, http://arxiv.org/pdf/1511.01308.pdf.
- N. Katzourakis and T. Pryer, Second order $L^\infty$ variational problems and the $\infty$-polylaplacian, arXiv preprint, http://arxiv.org/pdf/1605.07880.pdf.
Bibliographic Information
- Hussien Abugirda
- Affiliation: Department of Mathematics, College of Science, University of Basra, Basra, Iraq β and β Department of Mathematics and Statistics, University of Reading, Whiteknights, P.O. Box 220, Reading RG6 6AX, United Kingdom
- Email: h.a.h.abugirda@student.reading.ac.uk
- Nikos Katzourakis
- Affiliation: Department of Mathematics and Statistics, University of Reading, Whiteknights, P.O. Box 220, Reading RG6 6AX, United Kingdom
- Email: n.katzourakis@reading.ac.uk
- Received by editor(s): April 19, 2016
- Received by editor(s) in revised form: July 22, 2016
- Published electronically: December 27, 2016
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2567-2575
- MSC (2010): Primary 35J47, 35J62, 53C24; Secondary 49J99
- DOI: https://doi.org/10.1090/proc/13421
- MathSciNet review: 3626512