On Noether’s rationality problem for cyclic groups over $\mathbb {Q}$
HTML articles powered by AMS MathViewer
- by Bernat Plans
- Proc. Amer. Math. Soc. 145 (2017), 2407-2409
- DOI: https://doi.org/10.1090/proc/13438
- Published electronically: November 30, 2016
- PDF | Request permission
Abstract:
Let $p$ be a prime number. Let $C_p$, the cyclic group of order $p$, permute transitively a set of indeterminates $\{ x_1,\ldots ,x_p \}$. We prove that the invariant field $\mathbb {Q}(x_1,\ldots ,x_p)^{C_p}$ is rational over $\mathbb {Q}$ if and only if the $(p-1)$-th cyclotomic field $\mathbb {Q}(\zeta _{p-1})$ has class number one.References
- Francesco Amoroso and Roberto Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260–272. MR 1740514, DOI 10.1006/jnth.1999.2451
- Shizuo Endô and Takehiko Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7–26. MR 311754, DOI 10.2969/jmsj/02510007
- Akinari Hoshi, On Noether’s problem for cyclic groups of prime order, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 3, 39–44. MR 3317750, DOI 10.3792/pjaa.91.39
- H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325. MR 347788, DOI 10.1007/BF01389732
- H. W. Lenstra Jr., Rational functions invariant under a cyclic group, Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979) Queen’s Papers in Pure and Appl. Math., vol. 54, Queen’s Univ., Kingston, Ont., 1980, pp. 91–99. MR 634683
- J. Myron Masley and Hugh L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286(287) (1976), 248–256. MR 429824
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
Bibliographic Information
- Bernat Plans
- Affiliation: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
- Email: bernat.plans@upc.edu
- Received by editor(s): May 30, 2016
- Received by editor(s) in revised form: August 3, 2016
- Published electronically: November 30, 2016
- Additional Notes: This research was partially supported by grant 2014 SGR-634 and grant MTM2015-66180-R
- Communicated by: Romyar T. Sharifi
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2407-2409
- MSC (2010): Primary 12F10, 12F20, 13A50, 14E08, 11R18, 11R29
- DOI: https://doi.org/10.1090/proc/13438
- MathSciNet review: 3626499