Dimension of character varieties for $3$-manifolds
HTML articles powered by AMS MathViewer
- by E. Falbel and A. Guilloux
- Proc. Amer. Math. Soc. 145 (2017), 2727-2737
- DOI: https://doi.org/10.1090/proc/13394
- Published electronically: February 6, 2017
- PDF | Request permission
Abstract:
Let $M$ be an orientable $3$-manifold, compact with boundary and $\Gamma$ its fundamental group. Consider a complex reductive algebraic group $G$. The character variety $X(\Gamma ,G)$ is the GIT quotient $\mathrm {Hom}(\Gamma ,G)//G$ of the space of morphisms $\Gamma \to G$ by the natural action by conjugation of $G$. In the case $G=\mathrm {SL}(2,\mathbb {C})$ this space has been thoroughly studied.
Following work of Thurston (1980), as presented by Culler-Shalen (1983), we give a lower bound for the dimension of irreducible components of $X(\Gamma ,G)$ in terms of the Euler characteristic $\chi (M)$ of $M$, the number $t$ of torus boundary components of $M$, the dimension $d$ and the rank $r$ of $G$. Indeed, under mild assumptions on an irreducible component $X_0$ of $X(\Gamma ,G)$, we prove the inequality \[ \mathrm {dim}(X_0)\geq t \cdot r - d\chi (M).\]
References
- \large CURVE. http://curve.unhyperbolic.org/.
- Yves Benoist, Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 793–832 (French, with English and French summaries). MR 2195260, DOI 10.1016/j.ansens.2005.07.004
- Nicolas Bergeron, Elisha Falbel, Antonin Guilloux, Pierre-Vincent Koseleff, and Fabrice Rouillier, Local rigidity for $\textrm {PGL}(3,\Bbb C)$-representations of 3-manifold groups, Exp. Math. 22 (2013), no. 4, 410–420. MR 3171102, DOI 10.1080/10586458.2013.832441
- Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of $3$-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109–146. MR 683804, DOI 10.2307/2006973
- Elisha Falbel, A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008), no. 1, 69–110. MR 2401419
- E. Falbel, A. Guilloux, P.-V. Koseleff, F. Rouillier, and M. Thistlethwaite, Character varieties for $\textrm {SL}({\bf 3},\Bbb C)$: the figure eight knot, Exp. Math. 25 (2016), no. 2, 219–235. MR 3463570, DOI 10.1080/10586458.2015.1068249
- E. Falbel, P.-V. Koseleff, and F. Rouillier, Representations of fundamental groups of 3-manifolds into $\mathrm {PGL}(3,\Bbb {C})$: exact computations in low complexity, Geom. Dedicata 177 (2015), 229–255. MR 3370032, DOI 10.1007/s10711-014-9987-x
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9
- Benedict H. Gross, Group representations and lattices, J. Amer. Math. Soc. 3 (1990), no. 4, 929–960. MR 1071117, DOI 10.1090/S0894-0347-1990-1071117-8
- Antonin Guilloux, Deformation of hyperbolic manifolds in $\textrm {PGL}(n,\textbf {C})$ and discreteness of the peripheral representations, Proc. Amer. Math. Soc. 143 (2015), no. 5, 2215–2226. MR 3314127, DOI 10.1090/S0002-9939-2014-12376-8
- Yves Guivarc’h and Albert Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2, 165–196 (French, with English summary). MR 998669, DOI 10.1007/BF02764859
- M. Heusener, V. Munoz, and J. Porti, The sl(3,c)-character variety of the figure eight knot, arXiv:1505.04451 (2015).
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- D. D. Long and A. W. Reid, Commensurability and the character variety, Math. Res. Lett. 6 (1999), no. 5-6, 581–591. MR 1739217, DOI 10.4310/MRL.1999.v6.n5.a11
- Pere Menal-Ferrer and Joan Porti, Local coordinates for $\textrm {SL}(n,\mathbf C)$-character varieties of finite-volume hyperbolic 3-manifolds, Ann. Math. Blaise Pascal 19 (2012), no. 1, 107–122 (English, with English and French summaries). MR 2978315, DOI 10.5802/ambp.306
- David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 0453732
- Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), no. 3, 307–332. MR 815482, DOI 10.1016/0040-9383(85)90004-7
- R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), no. 3, 311–327. MR 535074
- Adam S. Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5173–5208. MR 2931326, DOI 10.1090/S0002-9947-2012-05448-1
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
- W. Thurston, The geometry and topology of 3-manifolds (1980). http://library.msri.org/books/gt3m/.
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2) 72 (1960), 369–384. MR 137792, DOI 10.2307/1970140
Bibliographic Information
- E. Falbel
- Affiliation: Institut de Mathématiques de Jussieu-Paris Rive Gauche, Unité Mixte de Recherche 7586 du CNRS, CNRS UMR 7586
- Email: elisha.falbel@imj-prg.fr
- A. Guilloux
- Affiliation: INRIA EPI-OURAGAN, Université Pierre et Marie Curie, 4 place Jussieu 75252 Paris Cédex, France - and - Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cédex, France
- Email: antonin.guilloux@imj-prg.fr
- Received by editor(s): December 15, 2015
- Received by editor(s) in revised form: April 6, 2016
- Published electronically: February 6, 2017
- Additional Notes: This work was supported in part by the ANR through the project “Structures Géométriques et Triangulations”.
- Communicated by: Michael Wolf
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2727-2737
- MSC (2010): Primary 57M27
- DOI: https://doi.org/10.1090/proc/13394
- MathSciNet review: 3626524