Adams operations on classical compact Lie groups
HTML articles powered by AMS MathViewer
- by Chi-Kwong Fok
- Proc. Amer. Math. Soc. 145 (2017), 2799-2813
- DOI: https://doi.org/10.1090/proc/13422
- Published electronically: January 27, 2017
- PDF | Request permission
Abstract:
Let $G$ be $U(n)$, $SU(n)$, $Sp(n)$ or $Spin(n)$. In this short note we give explicit general formulas for Adams operations on $K^*(G)$ and eigenvectors of Adams operations on $K^*(U(n))$.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603β632. MR 139178, DOI 10.2307/1970213
- Raoul Bott, Lectures on $K(X)$, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0258020
- A. K. Bousfield, The $K$-theory localizations and $v_1$-periodic homotopy groups of $H$-spaces, Topology 38 (1999), no.Β 6, 1239β1264. MR 1690156, DOI 10.1016/S0040-9383(98)00052-4
- Jean-Luc Brylinski and Bin Zhang, Equivariant $K$-theory of compact connected Lie groups, $K$-Theory 20 (2000), no.Β 1, 23β36. Special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part I. MR 1798430, DOI 10.1023/A:1007824116324
- Donald M. Davis, From representation theory to homotopy groups, Mem. Amer. Math. Soc. 160 (2002), no.Β 759, viii+50. MR 1938184, DOI 10.1090/memo/0759
- Donald M. Davis and Katarzyna Potocka, 2-primary $v_1$-periodic homotopy groups of $\textrm {SU}(n)$ revisited, Forum Math. 19 (2007), no.Β 5, 783β822. MR 2350774, DOI 10.1515/FORUM.2007.032
- Chi-Kwong Fok, The Real $K$-theory of compact Lie groups, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 022, 26. MR 3210613, DOI 10.3842/SIGMA.2014.022
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Luke Hodgkin, On the $K$-theory of Lie groups, Topology 6 (1967), 1β36. MR 214099, DOI 10.1016/0040-9383(67)90010-9
- Charles M. Naylor, Cohomology operations in the $K$-theory of the classical groups, Portugal. Math. 38 (1979), no.Β 3-4, 145β153 (1984). MR 745242
- Mark Reeder, On the cohomology of compact Lie groups, Enseign. Math. (2) 41 (1995), no.Β 3-4, 181β200. MR 1365844
- Takashi Watanabe, Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), no.Β 3, 463β488. MR 807104
- Takashi Watanabe, Adams operations in the connective $K$-theory of compact Lie groups, Osaka J. Math. 23 (1986), no.Β 3, 617β632. MR 866268
- Takashi Watanabe, On the $K\textrm {O}$-theory of Lie groups and symmetric spaces, Math. J. Okayama Univ. 37 (1995), 153β175 (1996). MR 1416253
Bibliographic Information
- Chi-Kwong Fok
- Affiliation: National Center for Theoretical Sciences, Mathematics Division, National Taiwan University, 2F of Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- MR Author ID: 1064746
- Email: ckfok@ntu.edu.tw
- Received by editor(s): October 7, 2015
- Received by editor(s) in revised form: March 20, 2016, May 30, 2016, July 20, 2016, and August 8, 2016
- Published electronically: January 27, 2017
- Communicated by: Michael A. Mandell
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2799-2813
- MSC (2010): Primary 19L20, 55N15
- DOI: https://doi.org/10.1090/proc/13422
- MathSciNet review: 3637931