The scale function and lattices
HTML articles powered by AMS MathViewer
- by G. A. Willis
- Proc. Amer. Math. Soc. 145 (2017), 3185-3190
- DOI: https://doi.org/10.1090/proc/13449
- Published electronically: January 23, 2017
- PDF | Request permission
Abstract:
It is shown that, given a lattice $H$ in a totally disconnected, locally compact group $G$, the contraction subgroups in $G$ and the values of the scale function on $G$ are determined by their restrictions to $H$. Group theoretic properties intrinsic to the lattice, such as being periodic or infinitely divisible, are then seen to imply corresponding properties of $G$.References
- Uri Bader, Pierre-Emmanuel Caprace, Tsachik Gelander, and Shahar Mozes, Simple groups without lattices, Bull. Lond. Math. Soc. 44 (2012), no. 1, 55–67. MR 2881324, DOI 10.1112/blms/bdr061
- Hyman Bass and Alexander Lubotzky, Tree lattices, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. MR 1794898, DOI 10.1007/978-1-4612-2098-5
- Udo Baumgartner, Scales for co-compact embeddings of virtually free groups, Geom. Dedicata 130 (2007), 163–175. MR 2365784, DOI 10.1007/s10711-007-9212-2
- Udo Baumgartner, Jacqui Ramagge, and George A. Willis, Scale-multiplicative semigroups and geometry: automorphism groups of trees, Groups Geom. Dyn. 10 (2016), no. 3, 1051–1075. MR 3551189, DOI 10.4171/GGD/376
- Udo Baumgartner and George A. Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J. Math. 142 (2004), 221–248. MR 2085717, DOI 10.1007/BF02771534
- Meenaxi Bhattacharjee and Dugald MacPherson, Strange permutation representations of free groups, J. Aust. Math. Soc. 74 (2003), no. 2, 267–285. MR 1957883, DOI 10.1017/S1446788700003293
- Adrien Le Boudec, Groups acting on trees with almost prescribed local action, Comment. Math. Helv. 91 (2016), no. 2, 253–293. MR 3493371, DOI 10.4171/CMH/385
- Marc Burger and Shahar Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 151–194 (2001). MR 1839489, DOI 10.1007/BF02698916
- Pierre-Emmanuel Caprace and Nicolas Monod, Decomposing locally compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 1, 97–128. MR 2739075, DOI 10.1017/S0305004110000368
- Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Limits of contraction groups and the Tits core, J. Lie Theory 24 (2014), no. 4, 957–967. MR 3328731
- Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Locally normal subgroups of simple locally compact groups, C. R. Math. Acad. Sci. Paris 351 (2013), no. 17-18, 657–661 (English, with English and French summaries). MR 3124321, DOI 10.1016/j.crma.2013.09.010
- D. van Dantzig, Zur topologischen Algebra, Math. Ann. 107 (1933), no. 1, 587–626 (German). MR 1512818, DOI 10.1007/BF01448911
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Wojciech Jaworski, On contraction groups of automorphisms of totally disconnected locally compact groups, Israel J. Math. 172 (2009), 1–8. MR 2534235, DOI 10.1007/s11856-009-0059-0
- A. Kepert and G. Willis, Scale functions and tree ends, J. Aust. Math. Soc. 70 (2001), no. 2, 273–292. MR 1815284, DOI 10.1017/S1446788700002640
- Alexander Lubotzky, Lattices in rank one Lie groups over local fields, Geom. Funct. Anal. 1 (1991), no. 4, 406–431. MR 1132296, DOI 10.1007/BF01895641
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1–54. MR 1767270, DOI 10.1007/s002220000064
- G. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), no. 2, 341–363. MR 1299067, DOI 10.1007/BF01450491
- George A. Willis, Further properties of the scale function on a totally disconnected group, J. Algebra 237 (2001), no. 1, 142–164. MR 1813900, DOI 10.1006/jabr.2000.8584
Bibliographic Information
- G. A. Willis
- Affiliation: School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Building V, Callaghan, NSW 2308, Australia
- MR Author ID: 183250
- Email: George.Willis@newcastle.edu.au
- Received by editor(s): July 7, 2015
- Received by editor(s) in revised form: August 27, 2016
- Published electronically: January 23, 2017
- Additional Notes: The author was supported by ARC Discovery Project DP150100060
- Communicated by: Kevin Whyte
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 3185-3190
- MSC (2010): Primary 22D05; Secondary 20E34, 22E40
- DOI: https://doi.org/10.1090/proc/13449
- MathSciNet review: 3637964