ON A COUNTEREXAMPLE RELATED TO WEIGHTED WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS

MARCELA CALDARELLI, ANDREI K. LERNER, AND SHELDY OMBROSI

(Communicated by Alexander Iosevich)

Abstract. We show that the Hilbert transform does not map $L^1(M_{\Phi} w)$ to $L^{1,\infty}(w)$ for every Young function Φ growing more slowly than $t \log \log (e^e + t)$. Our proof is based on a construction of M.C. Reguera and C. Thiele.

1. Introduction

Let H be the Hilbert transform. One of the open questions in the one-weighted theory of singular integrals is about the optimal Young function Φ for which the weak type inequality

\[(1.1) \quad w\{x \in \mathbb{R} : |Hf(x)| > \lambda\} \leq \frac{c}{\lambda} \int_{\mathbb{R}} |f| M_{\Phi} w \, dx \quad (\lambda > 0)\]

holds for every weight (i.e., non-negative measurable function) w and any $f \in L^1(M_{\Phi} w)$, where M_{Φ} is the Orlicz maximal operator defined by

\[M_{\Phi} f(x) = \sup_{I \ni x} \inf_{\lambda > 0} \left\{ \lambda > 0 : \frac{1}{|I|} \int_I \Phi \left(\frac{|f(y)|}{\lambda} \right) dy \leq 1 \right\}.\]

If $\Phi(t) = t$, then $M_{\Phi} = M$ is the standard Hardy-Littlewood maximal operator. If $\Phi(t) = t^r, r > 1$, denote $M_{\Phi} f = M_r f$.

C. Fefferman and E.M. Stein [6] showed that if H is replaced by the maximal operator M, then the corresponding inequality holds with $\Phi(t) = t$. Next, A. Córdoba and C. Fefferman [1] proved (1.1) with $\Phi(t) = t^r, r > 1$. This result was improved by C. Pérez [8], who showed that (1.1) holds with $\Phi(t) = t \log^\varepsilon (e^e + t), \varepsilon > 0$ (see also [7] for a different proof of this result).

Very recently, C. Domingo-Salazar, M.T. Lacey and G. Rey [5] obtained a further improvement; their result states that (1.1) holds whenever Φ satisfies

\[\int_1^\infty \frac{\Phi^{-1}(t)}{t^2 \log (e + t)} \, dt < \infty.\]

For example, one can take $\Phi(t) = t \log \log^\alpha (e^e + t), \alpha > 1$, or

\[\Phi(t) = t \log \log (e^e + t) \log \log \log^\alpha (e^e + t) \quad (\alpha > 1),\]

etc.
A question whether (1.1) is true with $\Phi(t) = t$ has become known as the Muckenhoupt-Wheeden conjecture. This conjecture was disproved by M.C. Reguera and C. Thiele [10] (see also [9] and [2] for dyadic and multidimensional versions of this result).

Denote $\Psi(t) = t \log \log (e^e + t)$. It was conjectured in [7] that (1.1) holds with $\Phi = \Psi$. The above-mentioned result in [5] establishes (1.1) for essentially every Φ growing faster than Ψ.

The main result of this note is the observation that the Reguera-Thiele example [10] actually shows that (1.1) does not hold for every Φ growing more slowly than Ψ.

Theorem 1.1. Let Φ be a Young function such that

$$\lim_{t \to \infty} \frac{\Phi(t)}{t \log \log (e^e + t)} = 0.$$

Then for every $c > 0$, there exist f, w and $\lambda > 0$ such that

$$w \{ x \in \mathbb{R} : |Hf(x)| > \lambda \} > \frac{c}{\lambda} \int_{\mathbb{R}} |f| \mathcal{M}_{\Phi} w \, dx.$$

This theorem along with the main result in [5] emphasizes that the case of $\Phi = \Psi$ is critical for (1.1). However, the question whether (1.1) holds with $\Phi = \Psi$ remains open.

We mention briefly the main ideas of the Reguera-Thiele example [10] and, in parallel, our novel points. First, it was shown in [10] that given $k \in \mathbb{N}$ sufficiently large, there is a weight w_k supported on $[0, 1]$ satisfying $H w_k \geq c w_k$ and $M w_k \leq c w_k$ on some subset $E \subset [0, 1]$. In Section 2, we show that the latter “A_1 property” can be slightly improved until $M_r w_k \leq c w_k$ with $r > 1$ depending on k. The second ingredient in [10] was the extrapolation argument of D. Cruz-Uribe and C. Pérez [3]. This argument says that assuming (1.1) with $M w$ on the right-hand side, one can deduce a certain weighted L^2 inequality for H. It is not clear how to extrapolate in a similar way starting with a general Orlicz maximal function M_{Φ} in (1.1). In Section 3, we obtain a substitute of the argument in [3] for $M_r w, r > 1$, instead of $M w$.

2. The Reguera-Thiele construction

We describe below the main parts of the example constructed by M.C. Reguera and C. Thiele [10].

An interval I of the form $[3^j n, 3^j (n + 1)), j, n \in \mathbb{Z}$, is called a triadic interval.

Fix $k \in \mathbb{N}$ large enough. Given a triadic interval $I_0 \subset [0, 1)$, denote $I^\Delta = \frac{1}{3} I$; namely, I^Δ is the interval with the same center as I and one third its length. Further, denote by $P(I)$ a triadic interval adjacent to I^Δ and such that $|P(I)| = \frac{1}{3} |I|$. Observe that $P(I)$ can be situated either on the left or on the right of I^Δ; we will return to this point a bit later.

Now set $J^1 = [0, 1)$ and $I_{1,1} = P(J^1)$. Next, we subdivide $(J^1)^\Delta$ into 3^{k-1} triadic intervals of equal length and denote them by $J^2_m, m = 1, 2, \ldots, 3^{k-1}$. Set correspondingly $I_{2,m} = P(J^2_m)$. Notice that $|J^2_m| = \frac{1}{3^2}$ and $|I_{2,m}| = \frac{1}{3^2}$ for $m = 1, 2, \ldots, 3^{k-1}$. Observe also that the intervals $I_{1,1}$ and $I_{2,m}$ are pairwise disjoint.

Proceeding by induction, at the l-th stage, we subdivide each interval $(J^{l-1}_m)^\Delta$ into 3^{k-1} triadic intervals of equal length and denote all obtained intervals by
Similarly, $J_{m}^l, m = 1, 2, \ldots, 3^{(k-1)(l-1)}$. Set $I_{l,m} = P(J_{m}^l)$. Then $|J_{m}^l| = \frac{1}{3^{k(l-1)}}$ and $|I_{l,m}| = \frac{1}{3^l}$, and the intervals $\{I_{l,m}\}$ are pairwise disjoint.

Denote by \mathcal{I}_l and \mathcal{J}_l the families of all intervals $\{I_{l,m}\}$ and $\{J_{m}^l\}$, respectively, and set $\Omega_l = \bigcup_{I \in \mathcal{I}_l} I$. Define the weight w_k such that $w_k([0, 1]) = 1$, w_k is a constant on Ω_l, and for every $I \in \mathcal{I}_l$ and $J \in \mathcal{J}_{l+1}$, $w_k(I) = w_k(J)$ (we use the standard notation $w_k(E) = \int_E w_k$).

It was proved in [10] that one can specify the situation of the intervals $\{I_{l,m}\}$ such that if $k > 3000$ and $x \in \bigcup_{l,m} I_{l,m}^\alpha$, then
\begin{equation}
|H w_k(x)| \geq (k/3) w_k(x);
\end{equation}
moreover,
\begin{equation}
M w_k(x) \leq 7 w_k(x) \quad (x \in \bigcup_{l,m} I_{l,m}^\alpha),
\end{equation}
irrespective of the precise configuration of $\{I_{l,m}\}$.

We will show that the latter estimate can be improved by means of replacing $M w_k$ on the left-hand side by a larger operator $M_r w_k$, with $r > 1$ depending on k.

In order to do that, we need a more constructive description of w_k.

Lemma 2.1. We have
\begin{equation}
w_k(x) = \sum_{l=1}^{\infty} \left(\frac{3^k}{3^{k-1}+1} \right)^l \chi_{\Omega_l}(x).
\end{equation}

Proof. Assume that $w_k = \alpha_l$ on Ω_l. Let $J \in \mathcal{J}_l$ and take $I \in \mathcal{I}_l$ such that $I \subset J$. Then
\begin{equation}
w_k(J) = w_k(I) + w_k(J^\Delta) = w_k(I) + \sum_{J' \in \mathcal{J}_{l+1} : J' \subset J^\Delta} w_k(J').
\end{equation}

Let $I' \in \mathcal{I}_{l-1}$. Then
\begin{equation}
w_k(J) = w_k(I') = \alpha_{l-1}|I'| = \alpha_{l-1}|J|.
\end{equation}

Similarly, $w_k(J') = \alpha_l|J'|$, and also $w_k(I) = \alpha_l|I| = \alpha_l \frac{|J|}{3^k}$. Hence, (2.3) implies that
\begin{equation}
\alpha_{l-1}|J| = \alpha_l \frac{|J|}{3^k} + \alpha_l \sum_{J' \in \mathcal{J}_{l+1} : J' \subset J^\Delta} |J'| = \alpha_l \frac{|J|}{3^k} + \alpha_l \frac{|J|}{3^k}.
\end{equation}

From this, $\alpha_l = \frac{3^k}{3^{k-1} + 1} \alpha_{l-1}$, and therefore $\alpha_l = \left(\frac{3^k}{3^{k-1}+1} \right)^l \gamma$ for some $\gamma > 0$.

From the condition $w_k([0, 1]) = 1$, we obtain
\begin{align*}
1 &= w_k([0, 1]) = \gamma \sum_{l=1}^{\infty} \left(\frac{3^k}{3^{k-1}+1} \right)^l |\Omega_l| \\
&= \gamma \sum_{l=1}^{\infty} \left(\frac{3^k}{3^{k-1}+1} \right)^l \frac{3^{(k-1)(l-1)}}{3^l} = \gamma \frac{1}{3^k-1} \sum_{l=1}^{\infty} \left(\frac{3^{k-1}}{3^{k-1}+1} \right)^k = \gamma,
\end{align*}
and therefore the lemma is proved. \qed

Lemma 2.2. Let $r = 1 + \frac{1}{3^k-1}$. Then for every $I \in \mathcal{I}_l, l \in \mathbb{N}$, and for all $x \in I^\Delta$, $M_r w_k(x) \leq 21 w_k(x)$.

Proof. Let $I \in \mathcal{I}_l$ and let $x \in I^A$. Take an arbitrary interval R containing x. If $R \subset I$, then
\[
\left(\frac{1}{|R|} \int_R w^r_k(y)dy \right)^{1/r} = \left(\frac{3^k}{3^{k-1} + 1} \right)^l = w_k(x).
\]
Assume that $R \not\subset I$. Then $|R| \geq |I|/3$. Denote by \mathcal{F} the family of all triadic intervals $I' \subset [0,1)$ such that $|I'| = |I|$ and $I' \cap R \neq \emptyset$. There are at most two intervals $I' \in \mathcal{F}$ not contained in R, and therefore,
\[
(2.4) \quad \sum_{I' \in \mathcal{F}} |I'| \leq |R| + \sum_{I' \in \mathcal{F} : I' \not\subset R} |I'| \leq |R| + 2|I| \leq 7|R|.
\]
We claim that if $r = 1 + \frac{1}{3^{k+1}}$, then for every $I' \in \mathcal{F}$,
\[
(2.5) \quad \left(\frac{1}{|I'|} \int_{I'} w^r_k(y)dy \right)^{1/r} \leq 3w_k(x).
\]
This property would conclude the proof since then, by (2.4),
\[
\frac{1}{|R|} \int_R w^r_k(y)dy \leq \sum_{I' \in \mathcal{F}} \frac{|I'|}{|R|} \frac{1}{|I'|} \int_{I'} w^r_k(y)dy \leq 7(3w_k(x))^r.
\]
To show (2.5), one can assume that I' has a non-empty intersection with the support of w_k. If $I' \neq J$ for some $J \in \mathcal{J}_{l+1}$, then $I' \subset L$, where $L \in \mathcal{I}_\nu$, $\nu \leq l$, and hence
\[
\left(\frac{1}{|I'|} \int_{I'} w^r_k(y)dy \right)^{1/r} = \left(\frac{3^k}{3^{k-1} + 1} \right)^r \leq w_k(x).
\]
It remains to consider the case when $I' = J$ for some $J \in \mathcal{J}_{l+1}$. Using that for every $j \geq l + 1$, $J \in \mathcal{J}_{l+1}$ contains $3(j-l-1)$ triadic intervals $I \in \mathcal{I}_j$, we obtain
\[
\frac{1}{|I'|} \int_{I'} w^r_k(y)dy = 3^{l_j} \sum_{j=l+1}^{\infty} \sum_{I \in \mathcal{I}_j : I \subset I'} \int_I w^r_k(y)dy
\]
\[
= \sum_{j=l+1}^{\infty} 3^{j-l-1} 3^{j-l} \left(\frac{3^k}{3^{k-1} + 1} \right)^{j/r}
\]
\[
= \frac{1}{3^{k-1}} \sum_{j=1}^{\infty} 3^{-j} \left(\frac{3^k}{3^{k-1} + 1} \right)^{(j+l)r}.
\]
Therefore,
\[
\frac{1}{|I'|} \int_{I'} w^r_k(y)dy \leq \frac{1}{3^{k-1}} \left(\sum_{j=1}^{\infty} 3^{-j} \left(\frac{3^k}{3^{k-1} + 1} \right)^{(j+l)r} \right) w_k(x)^r
\]
\[
\leq \frac{1}{3^{k-1}} \left(\frac{3^k}{3^{k-1} + 1} \right)^{r} w_k(x)^r,
\]
whenever $\left(\frac{3^k}{3^{k-1} + 1} \right)^{r} < 3$.
If $r = 1 + \frac{1}{3^{k+1}}$, then
\[
\left(\frac{3^k}{3^{k-1} + 1} \right)^{1+\frac{1}{3^{k+1}}} \leq 3^{\frac{1}{3^{k+1}}} \frac{3^k}{3^{k-1} + 1} \leq \left(1 + \frac{1}{3^k} \right) \frac{3^k}{3^{k-1} + 1} = 3 - \frac{3^k}{3^{k-1} + 1}.
\]
Hence,
\[
\frac{1}{|I|} \int_I w_k^r(y)dy \leq \frac{3^k-1+1}{2} w_k(x)^r \leq 3w_k(x)^r,
\]
which completes the proof. \qed

3. Extrapolation

Here we follow the extrapolation argument of D. Cruz-Uribe and C. Pérez [3], with some modifications.

Denote by \(M_c^e \) the centered weighted maximal operator with respect to a weight \(v \), and skip the index \(v \) in the unweighted case.

Lemma 3.1. Assume that for every weight \(w \) and for all \(f \in L^1(M_v,w) \),
\[
\|Hf\|_{L^{1,\infty}(w)} \leq A_r \|f\|_{L^1(M_v(w))} \quad (1 < r < 2).
\]
Let \(\alpha_r = \frac{r}{2-r} \). There is \(c > 0 \) such that for any weight \(w \) supported in \([0,1]\) one has
\[
\int_0^1 \left(\frac{|Hw|}{(M\alpha, w)^{\alpha_r/r}} \right)^2 w^{\alpha_r} dx \leq c A_r^2 \int_0^1 w dx \quad (1 < r < 2).
\]
Proof. Denote \(\beta_r = \frac{r(r-1)}{2-r} \). The numbers \(\alpha_r \) and \(\beta_r \) are chosen in such a way that they satisfy \(\alpha_r - \beta_r = r \) and \(\alpha_r - \frac{2\beta_r}{r} = 1 \).

For \(\varepsilon > 0 \) set \(w_{\varepsilon} = \max(w, \varepsilon) \). Let \(g \geq 0 \). Since
\[
\frac{1}{|I|} \int_I (gw_{\varepsilon})^r = \left(\frac{1}{w_{\varepsilon}^{\alpha_r}(I)} \right) \int_I (g^r/w_{\varepsilon}^{\beta_r}) w_{\varepsilon}^{\alpha_r} \frac{w_{\varepsilon}^{\alpha_r}(I)}{|I|},
\]
using that \(Mf \leq 2M^c f \), we get
\[
(3.1) \quad M_r(gw_{\varepsilon})(x) \leq 2 \left(M^c_{w_{\varepsilon}^{\alpha_r}}(g^r/w_{\varepsilon}^{\beta_r})(x) M_{\alpha_r}(w_{\varepsilon})(x)^{\alpha_r} \right)^{1/r}.
\]

Using the initial assumption on \(H \) for the weight \(gw_{\varepsilon} \) along with \(M^c \), and applying Hölder’s inequality along with the boundedness of \(M^c_{w_{\varepsilon}^{\alpha_r}} \) on \(L^p(v) \), for \(p = \frac{2}{r} > 1 \), we obtain
\[
\int_{\{|Hf| > 1\}} gw_{\varepsilon} \leq A_r \|f\|_{L^1(M_v(gw_{\varepsilon}))} \leq 2A_r \int \left(|f| M_{\alpha_r}(w_{\varepsilon}) w_{\varepsilon}^{\frac{\alpha_r}{\alpha_r/2}} \right) \left(M^c_{w_{\varepsilon}^{\alpha_r}}(g^r/w_{\varepsilon}^{\beta_r}) w_{\varepsilon}^{\alpha_r/2} \right) dx \leq 2A_r \|f\|_{L^2(M_{\alpha_r}(w_{\varepsilon})^{\frac{2\alpha_r}{\alpha_r/2}}/w_{\varepsilon}^{\alpha_r}))} \left(M^c_{w_{\varepsilon}^{\alpha_r}}(g^r/w_{\varepsilon}^{\beta_r}) \right)^{1/2} \|L^2(w_{\varepsilon}^{\alpha_r}) \leq cA_r \|f\|_{L^2(M_{\alpha_r}(w_{\varepsilon})^{\frac{2\alpha_r}{\alpha_r/2}}/w_{\varepsilon}^{\alpha_r})} \|g\|_{L^2(w_{\varepsilon})}.
\]
Taking here the supremum over all \(g \geq 0 \) with \(\|g\|_{L^2(w_{\varepsilon})} = 1 \) yields
\[
\|Hf\|_{L^{2,\infty}(w_{\varepsilon})} \leq cA_r \|f\|_{L^2(M_{\alpha_r}(w_{\varepsilon})^{\frac{2\alpha_r}{\alpha_r/2}}/w_{\varepsilon}^{\alpha_r})}.
\]
By duality, the latter inequality is equivalent to
\[
\|Hf\|_{L^2(w_{\varepsilon}^{\alpha_r}/(M_{\alpha_r}(w_{\varepsilon})^{\frac{2\alpha_r}{\alpha_r/2}})} \leq cA_r \|f/w_{\varepsilon}\|_{L^2,1(w_{\varepsilon})},
\]
where \(L^2,1(w_{\varepsilon}) \) is the weighted Lorentz space. Take here \(f = w \) and use that
\[
\|w/w_{\varepsilon}\|_{L^2,1(w_{\varepsilon})} \leq \|\chi_{[0,1]}\|_{L^{2,1}(w_{\varepsilon})} = \int_0^{w_{\varepsilon}(0,1)} t^{-1/2} dt = 2w_{\varepsilon}(0,1)^{1/2}.
\]
We obtain
\[\|Hw\|_{L^2}\left(w^{\alpha_r}/(M_{\alpha_r}, w)\right) \leq 2cA_r w_\varepsilon([0,1])^{1/2}. \]
It remains to let \(\varepsilon \to 0 \) and to use the Fatou convergence theorem. \(\square \)

4. Proof of Theorem 1.1

Our goal is to use the extrapolation Lemma 3.1 assuming (1.1) with a general Orlicz maximal function \(M_\Phi \). Hence, we need a relation between \(M_\Phi \) and \(M_r \) with possibly good dependence of the corresponding constant on \(r \) when \(r \to 1 \). Such a relation was recently obtained in [4] (see Lemma 6.2 and inequality (6.4) there). For the reader’s convenience we include a proof here.

Lemma 4.1. For all \(x \in \mathbb{R} \),
\[M_\Phi f(x) \leq \left(2 \sup_{t \geq \Phi^{-1}(1/2)} \frac{\Phi(t)}{t^r} \right)^{1/r} M_r f(x) \quad (r > 1). \]

Proof. For any interval \(I \subset \mathbb{R} \),
\[\int_I \Phi \left(\frac{|f|}{\lambda} \right) = \int_{\{x \in I : |f| \leq \Phi^{-1}(1/2)\lambda\}} \Phi \left(\frac{|f|}{\lambda} \right) + \int_{\{x \in I : |f| \geq \Phi^{-1}(1/2)\lambda\}} \Phi \left(\frac{|f|}{\lambda} \right) \leq \frac{|I|}{2} + c_r \int_I (|f|/\lambda)^r \, dx, \]
where \(c_r = \sup_{t \geq \Phi^{-1}(1/2)} \frac{\Phi(t)}{t^r} \). Therefore, setting \(\lambda_0 = \left(\frac{2c_r}{|I|} \int_I |f|^r \right)^{1/r} \), we obtain
\[\frac{1}{|I|} \int_I \Phi(|f|/\lambda_0) \, dx \leq 1, \]
which proves (4.1). \(\square \)

It follows easily from (4.1) that
\[M_\Phi f(x) \leq c \left(\sup_{t \geq 1} \frac{\Phi(t)^{1/r}}{t} \right) M_r f(x) \quad (r > 1), \]
where \(c \) may depend on \(\Phi \), but it does not depend on \(r \).

Proof of Theorem 1.1 Suppose, by contrast, that (1.1) holds. Then combining (4.2) with Lemma 3.1, we obtain
\[\int_0^1 \left(\frac{|Hw|}[(M_{\alpha_r}, w)^{\alpha_r/r}] \right)^2 w^{\alpha_r} \, dx \leq c \left(\sup_{t \geq 1} \frac{\Phi(t)^{1/r}}{t} \right)^2 \int_0^1 w \, dx \quad (1 < r < 2). \]

Set here \(r = r_k = 1 + \frac{1}{3^k + 1}, \) and \(w = w_k \) as constructed in Section 2. Then \(\alpha_k = r_k r = 1 + \frac{1}{3^{k+1}} \). Applying (2.1) along with Lemma 2.2 yields
\[\int_0^1 \left(\frac{|Hw_k|}[(M_{\alpha_r}, w_k)^{\alpha_r/r}] \right)^2 w_k^{\alpha_k} \, dx \geq \frac{k^2}{9 \cdot 27^{2-r_k}} \int_{[k \notin I \cup \ell \in \mathbb{N} \cup \ell \in I_i \ell \Delta} w_k \]
\[= \frac{k^2}{27^{1+2-r_k}} \int_0^1 w_k, \]
and we obtain
\[k \leq c \sup_{t \geq 1} \frac{\Phi(t)^{1/r_k}}{t}. \]
It remains to estimate the right-hand side of (4.3). Write
\[\Phi(t) = t \log \log(e^t + t) \phi(t), \]
where \(\lim_{t \to \infty} \phi(t) = 0 \). Since
\[\log \log t = \log(r') + \log t^{1/r'} \leq \log(r') + t^{1/r'}, \]
for \(t > e^{r'} \) we obtain
\[\frac{\Phi(t)^{1/r}}{t} = \left(\frac{\log \log(e^t + t) \phi(t)}{t^{1/r'}} \right)^{1/r} \leq c \left(\frac{\log(r')^{1/r} (\sup_{t \geq e^{r'}} \phi(t))^{1/r}}{t^{1/r'}} \right) \]
(here \(r' \) is the dual exponent to \(r \)).

On the other hand, if \(0 < \delta < 1 \), then
\[\sup_{1 \leq t \leq e^{r'}} \frac{\Phi(t)^{1/r}}{t} \leq \sup_{1 \leq t \leq e^{(\log r')^\delta}} \left(\frac{\log \log(e^t + t) \phi(t)}{t^{1/r'}} \right)^{1/r} \]
\[+ \sup_{e^{(\log r')^\delta} \leq t \leq e^{r'}} \left(\frac{\log \log(e^t + t) \phi(t)}{t^{1/r'}} \right)^{1/r} \]
\[\leq c \left((\log r')^{\delta/r} + (\log r')^{1/r} \sup_{t \geq e^{(\log r')^\delta}} \phi(t)^{1/r} \right). \]

Setting \(\beta_k = \sup_{t \geq e^{(\log r')^\delta}} \phi(t)^{1/r} \) and combining both cases, we obtain
\[\sup_{t \geq 1} \frac{\Phi(t)^{1/r_k}}{t} \leq c \left((\log r')^{\delta/r_k} + \beta_k (\log r')^{1/r_k} \right) \]
\[\leq c(k^{\delta} + \beta_k k). \]

Since \(\beta_k \to 0 \) as \(k \to \infty \), we arrive at a contradiction with (4.3), and therefore the theorem is proved. \(\square \)

Remark 4.2. The following inequality is contained implicitly in [7]:
\[\lambda \{ x \in \mathbb{R} : |Hf(x)| > \lambda \} \leq c \log(r') \|f\|_{L^1(M,w)} \quad (r > 1). \]
The proof of Theorem [11] shows that \(\log(r') \) here is optimal; namely, it cannot be replaced by \(\varphi(r') \) for any increasing \(\varphi \) such that \(\lim_{t \to \infty} \frac{\varphi(t)}{\log t} = 0 \).

References

Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina

E-mail address: marcela.caldarelli@uns.edu.ar

Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel

E-mail address: lernera@math.biu.ac.il

Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina

E-mail address: sombrosi@uns.edu.ar