Embeddings of algebras in derived categories of surfaces
HTML articles powered by AMS MathViewer
- by Pieter Belmans and Theo Raedschelders PDF
- Proc. Amer. Math. Soc. 145 (2017), 2757-2770 Request permission
Abstract:
By a result of Orlov there always exists an embedding of the derived category of a finite-dimensional algebra of finite global dimension into the derived category of a high-dimensional smooth projective variety. In this article we give some restrictions on those algebras whose derived categories can be embedded into the bounded derived category of a smooth projective surface. This is then applied to obtain explicit results for hereditary algebras.References
- Dagmar Baer, Tilting sheaves in representation theory of algebras, Manuscripta Math. 60 (1988), no. 3, 323–347. MR 928291, DOI 10.1007/BF01169343
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: the method of helices, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 2, 3–50 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 42 (1994), no. 2, 219–260. MR 1230966, DOI 10.1070/IM1994v042n02ABEH001536
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- Louis de Thanhoffer de Völcsey, Non-commutative projective geometry and Calabi–Yau algebras, Ph.D. thesis, 2015.
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Sergey Gorchinskiy and Dmitri Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 329–349. MR 3090263, DOI 10.1007/s10240-013-0050-5
- Dieter Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339–389. MR 910167, DOI 10.1007/BF02564452
- Dieter Happel, A family of algebras with two simple modules and Fibonacci numbers, Arch. Math. (Basel) 57 (1991), no. 2, 133–139. MR 1116189, DOI 10.1007/BF01189999
- Lutz Hille and Markus Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230–1280. MR 2822868, DOI 10.1112/S0010437X10005208
- Lutz Hille and Markus Perling, Tilting bundles on rational surfaces and quasi-hereditary algebras, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 625–644 (English, with English and French summaries). MR 3330917
- Osamu Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014. MR 1948089, DOI 10.1090/S0002-9939-02-06616-9
- Bernhard Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998), no. 1-3, 223–273. MR 1492902, DOI 10.1016/S0022-4049(96)00085-0
- A. G. Kuznetsov, Derived categories of Fano threefolds, Tr. Mat. Inst. Steklova 264 (2009), no. Mnogomernaya Algebraicheskaya Geometriya, 116–128 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 264 (2009), no. 1, 110–122. MR 2590842, DOI 10.1134/S0081543809010143
- Alexander Kuznetsov, Semiorthogonal decompositions in algebraic geometry, Proceedings of the ICM 2014, 2014.
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 249428, DOI 10.1215/kjm/1250523940
- Shinnosuke Okawa, Semi-orthogonal decomposability of the derived category of a curve, Adv. Math. 228 (2011), no. 5, 2869–2873. MR 2838062, DOI 10.1016/j.aim.2011.06.043
- Dmitri Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. 302 (2016), 59–105. MR 3545926, DOI 10.1016/j.aim.2016.07.014
- Dmitri O. Orlov, Geometric realizations of quiver algebras, Proc. Steklov Inst. Math. 290 (2015), no. 1, 70–83. Published in Russian in Tr. Mat. Inst. Steklova 290 (2015), 80–94. MR 3488782, DOI 10.1134/S0081543815060073
- Gonçalo Tabuada and Michel Van den Bergh, Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2015), no. 2, 379–403. MR 3315059, DOI 10.1017/S147474801400005X
- Gonçalo Tabuada and Michel Van den Bergh, Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2015), no. 2, 379–403. MR 3315059, DOI 10.1017/S147474801400005X
Additional Information
- Pieter Belmans
- Affiliation: Department of Mathematics and Computer Science, Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, Belgium
- MR Author ID: 1110715
- Theo Raedschelders
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
- Received by editor(s): August 5, 2015
- Received by editor(s) in revised form: May 30, 2016, and June 30, 2016
- Published electronically: February 24, 2017
- Communicated by: Lev Borisov
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2757-2770
- MSC (2010): Primary 14F05, 16E35; Secondary 18E30
- DOI: https://doi.org/10.1090/proc/13497
- MathSciNet review: 3637928