On the rigidity and boundary regularity for Bakry-Emery-Kohn harmonic functions in Bergman metric on the unit ball in $\textit {C}^n$
HTML articles powered by AMS MathViewer
- by QiQi Zhang
- Proc. Amer. Math. Soc. 145 (2017), 2971-2979
- DOI: https://doi.org/10.1090/proc/13501
- Published electronically: February 22, 2017
- PDF | Request permission
Abstract:
In this paper we study the rigidity theorem for smooth Bakry-Emery-Kohn harmonic function $u$ in the unit ball $B_n$ in $\textit {C}^n$, which satisfies \begin{equation*} \Box ^{\psi } u=\sum _{i, j=1}^n (\delta _{ij}-z_i \overline {z}_j){\partial ^2 u \over \partial z_i \partial \overline {z}_j}+(1-|z|^2) \psi ’(|z|^2) \sum _{j=1}^n \overline {z}_j {\partial u\over \partial \overline {z}_j}=0 \end{equation*} with some restriction of the coefficients of Taylor expansion for $\psi$ at $1$. We prove that any smooth B-E-K harmonic function on $\overline {B}_n$ must be holomorphic in $B_n$. We study the regularity problem for the solution of the Dirichlet boundary value problem: \begin{equation*} \begin {cases} \Box ^\psi u=0, \hbox { if } z\in B_n,\cr \quad \ u=f, \hbox { if } z\in \partial B_n.\cr \end{cases} \end{equation*}References
- Patrick Ahern, Joaquim Bruna, and Carme Cascante, $H^p$-theory for generalized $M$-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), no. 1, 103–135. MR 1406686, DOI 10.1512/iumj.1996.45.1961
- C. Robin Graham, The Dirichlet problem for the Bergman Laplacian. I, Comm. Partial Differential Equations 8 (1983), no. 5, 433–476. MR 695400, DOI 10.1080/03605308308820275
- C. Robin Graham, The Dirichlet problem for the Bergman Laplacian. II, Comm. Partial Differential Equations 8 (1983), no. 6, 563–641. MR 700730, DOI 10.1080/03605308308820279
- C. Robin Graham and John M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J. 57 (1988), no. 3, 697–720. MR 975118, DOI 10.1215/S0012-7094-88-05731-6
- Song-Ying Li and Lei Ni, On the holomorphicity of proper harmonic maps between unit balls with the Bergman metrics, Math. Ann. 316 (2000), no. 2, 333–354. MR 1741273, DOI 10.1007/s002080050015
- Song-Ying Li and Ezequias Simon, Boundary behavior of harmonic functions in metrics of Bergman type on the polydisc, Amer. J. Math. 124 (2002), no. 5, 1045–1057. MR 1925342, DOI 10.1353/ajm.2002.0028
- Song-Ying Li and DongHuan Wei, On the rigidity theorem for harmonic functions in Kähler metric of Bergman type, Sci. China Math. 53 (2010), no. 3, 779–790. MR 2608333, DOI 10.1007/s11425-010-0040-8
- Congwen Liu and Lizhong Peng, Boundary regularity in the Dirichlet problem for the invariant Laplacians $\Delta _\gamma$ on the unit real ball, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3259–3268. MR 2073300, DOI 10.1090/S0002-9939-04-07582-3
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936, DOI 10.1090/mmono/006
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
Bibliographic Information
- QiQi Zhang
- Affiliation: School of Mathematics and Computer Science, FuJian Normal University, Fuzhou 350007, People’s Republic of China
- Email: zqq123_{good}@163.com
- Received by editor(s): August 8, 2016
- Published electronically: February 22, 2017
- Communicated by: Lei Ni
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2971-2979
- MSC (2010): Primary 32A50
- DOI: https://doi.org/10.1090/proc/13501
- MathSciNet review: 3637945