The monotonicity and convexity for the ratios of modified Bessel functions of the second kind and applications
HTML articles powered by AMS MathViewer
- by Zhen-Hang Yang and Shen-Zhou Zheng
- Proc. Amer. Math. Soc. 145 (2017), 2943-2958
- DOI: https://doi.org/10.1090/proc/13522
- Published electronically: January 23, 2017
- PDF | Request permission
Abstract:
Let $K_{v}\left ( x\right )$ be the modified Bessel functions of the second kind of order $v$. We prove that the function $x\mapsto K_{u}\left ( x\right ) K_{v}\left ( x\right ) /K_{\left ( u+v\right ) /2}\left ( x\right ) ^{2}$ is strictly decreasing on $\left ( 0,\infty \right )$. Our study not only involves the Turán type inequalities, log-convexity or log-concavity of $K_{v}\left ( x\right )$, and the conjecture posed by Baricz, but also yields various new results concerning the monotonicity and convexity of the ratios of the modified Bessel functions of the second kind. As applications of our main theorems, some new sharp inequalities involving $K_{v}\left ( x\right )$ are presented, which contain sharp estimates for $K_{v}\left ( x\right )$ and sharp bounds for the ratios $K_{v}^{\prime }\left ( x\right ) /K_{v}\left ( x\right )$ and $K_{v+1}\left ( x\right ) /K_{v}\left ( x\right )$.References
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- A. Laforgia and P. Natalini, Turán-type inequalities for some special functions, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 1, Article 22, 3. MR 2217185, DOI 10.1080/10273660600914121
- A. Laforgia and P. Natalini, On some Turán-type inequalities, J. Inequal. Appl. , posted on (2006), Art. ID 29828, 6. MR 2221215, DOI 10.1155/JIA/2006/29828
- Mourad E. H. Ismail and Andrea Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007), no. 1, 1–9. MR 2310684, DOI 10.1007/s00365-005-0627-4
- Árpád Baricz, Turán type inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3223–3229. MR 2407087, DOI 10.1090/S0002-9939-08-09353-2
- Horst Alzer and Giovanni Felder, A Turán-type inequality for the gamma function, J. Math. Anal. Appl. 350 (2009), no. 1, 276–282. MR 2476910, DOI 10.1016/j.jmaa.2008.09.053
- Árpád Baricz, On a product of modified Bessel functions, Proc. Amer. Math. Soc. 137 (2009), no. 1, 189–193. MR 2439440, DOI 10.1090/S0002-9939-08-09571-3
- Roger W. Barnard, Michael B. Gordy, and Kendall C. Richards, A note on Turán type and mean inequalities for the Kummer function, J. Math. Anal. Appl. 349 (2009), no. 1, 259–263. MR 2455746, DOI 10.1016/j.jmaa.2008.08.024
- Andrea Laforgia and Pierpaolo Natalini, Some inequalities for modified Bessel functions, J. Inequal. Appl. , posted on (2010), Art. ID 253035, 10. MR 2592860, DOI 10.1155/2010/253035
- Árpád Baricz, Turán type inequalities for some probability density functions, Studia Sci. Math. Hungar. 47 (2010), no. 2, 175–189. MR 3113728, DOI 10.1556/SScMath.2009.1123
- Chrysi G. Kokologiannaki, Bounds for functions involving ratios of modified Bessel functions, J. Math. Anal. Appl. 385 (2012), no. 2, 737–742. MR 2834849, DOI 10.1016/j.jmaa.2011.07.004
- Árpád Baricz and Tibor K. Pogány, Turán determinants of Bessel functions, Forum Math. 26 (2014), no. 1, 295–322. MR 3176632, DOI 10.1515/form.2011.160
- Mourad E. H. Ismail, Bessel functions and the infinite divisibility of the Student $t$-distribution, Ann. Probability 5 (1977), no. 4, 582–585. MR 448480, DOI 10.1214/aop/1176995766
- Christian Robert, Modified Bessel functions and their applications in probability and statistics, Statist. Probab. Lett. 9 (1990), no. 2, 155–161. MR 1045178, DOI 10.1016/0167-7152(92)90011-S
- Luc Devroye, Simulating Bessel random variables, Statist. Probab. Lett. 57 (2002), no. 3, 249–257. MR 1912083, DOI 10.1016/S0167-7152(02)00055-X
- A. A. Lushnikov, J. S. Bhatt, and I. J. Ford, Stochastic approach to chemical kinetics in ultrafine aerosols, J. Aerosol Sci. 34 (2003), 1117–1133.
- H. van Haeringen, Bound states for $r{}^{-}{}^{2}$-like potentials in one and three dimensions, J. Math. Phys. 19 (1978), no. 10, 2171–2179. MR 507514, DOI 10.1063/1.523574
- S. Tan and L. Jiao, Multishrinkage: Analytical form for a Bayesian wavelet estimator based on the multivariate Laplacian model, Optim. Lett. 32 (2007), no. 17, 2583–2585.
- P. A. Khazron and I. W. Selesnick, Bayesian estimation of Bessel K-form random vectors in AWGN, IEEE Signal Process. Lett. 15 (2008), 261–264.
- Mourad E. H. Ismail and Martin E. Muldoon, Monotonicity of the zeros of a cross-product of Bessel functions, SIAM J. Math. Anal. 9 (1978), no. 4, 759–767. MR 486686, DOI 10.1137/0509055
- Árpád Baricz, Turán type inequalities for modified Bessel functions, Bull. Aust. Math. Soc. 82 (2010), no. 2, 254–264. MR 2685149, DOI 10.1017/S000497271000002X
- Javier Segura, Bounds for ratios of modified Bessel functions and associated Turán-type inequalities, J. Math. Anal. Appl. 374 (2011), no. 2, 516–528. MR 2729238, DOI 10.1016/j.jmaa.2010.09.030
- Árpád Baricz, Bounds for Turánians of modified Bessel functions, Expo. Math. 33 (2015), no. 2, 223–251. MR 3342624, DOI 10.1016/j.exmath.2014.07.001
- Árpád Baricz and Saminathan Ponnusamy, On Turán type inequalities for modified Bessel functions, Proc. Amer. Math. Soc. 141 (2013), no. 2, 523–532. MR 2996956, DOI 10.1090/S0002-9939-2012-11325-5
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- E. Grosswald, The Student $t$-distribution of any degree of freedom is infinitely divisible, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 103–109. MR 426091, DOI 10.1007/BF00533993
- Mourad E. H. Ismail, Complete monotonicity of modified Bessel functions, Proc. Amer. Math. Soc. 108 (1990), no. 2, 353–361. MR 993753, DOI 10.1090/S0002-9939-1990-0993753-9
- Mourad E. H. Ismail, Integral representations and complete monotonicity of various quotients of Bessel functions, Canadian J. Math. 29 (1977), no. 6, 1198–1207. MR 463527, DOI 10.4153/CJM-1977-119-5
- K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct. 12 (2001), no. 4, 389–402. MR 1872377, DOI 10.1080/10652460108819360
- Árpád Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 575–599. MR 2720238, DOI 10.1017/S0013091508001016
- D. J. Bordelon and D. K. Ross, Problem 72-l5, “Inequalities for special functions”, SIAM Rev. 15 (1973), 665–670. MR 324085, DOI 10.1137/1015083
- D. K. Ross, Problem 72-15, inequalities for special functions, SIAM Rev. 15 (1973), 668–670.
- R. B. Paris, An inequality for the Bessel function $J_\nu (\nu x)$, SIAM J. Math. Anal. 15 (1984), no. 1, 203–205. MR 728695, DOI 10.1137/0515016
- Andrea Laforgia, Bounds for modified Bessel functions, J. Comput. Appl. Math. 34 (1991), no. 3, 263–267. MR 1102583, DOI 10.1016/0377-0427(91)90087-Z
- Ernst Joachim Weniger and Jiří Čížek, Rational approximations for the modified Bessel function of the second kind, Comput. Phys. Comm. 59 (1990), no. 3, 471–493. MR 1063768, DOI 10.1016/0010-4655(90)90089-J
- Yudell L. Luke, Inequalities for generalized hypergeometric functions, J. Approximation Theory 5 (1972), 41–65. MR 350082, DOI 10.1016/0021-9045(72)90028-7
- Robert E. Gaunt, Inequalities for modified Bessel functions and their integrals, J. Math. Anal. Appl. 420 (2014), no. 1, 373–386. MR 3229830, DOI 10.1016/j.jmaa.2014.05.083
- Donat K. Kazarinoff, On Wallis’ formula, Edinburgh Math. Notes 1956 (1956), no. 40, 19–21. MR 82501, DOI 10.1017/S095018430000029X
- R. S. Phillips and Henry Malin, Bessel function approximations, Amer. J. Math. 72 (1950), 407–418. MR 35346, DOI 10.2307/2372042
Bibliographic Information
- Zhen-Hang Yang
- Affiliation: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
- Address at time of publication: Department of Science and Technology, State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, People’s Republic of China, 310014
- MR Author ID: 252484
- Email: yzhkm@163.com
- Shen-Zhou Zheng
- Affiliation: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
- MR Author ID: 605970
- Email: shzhzheng@bjtu.edu.cn
- Received by editor(s): June 23, 2016
- Received by editor(s) in revised form: July 7, 2016, and August 4, 2016
- Published electronically: January 23, 2017
- Additional Notes: The second author was supported in part by the National Natural Science Foundation of China Grant #11371050.
- Communicated by: Mourad Ismail
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 2943-2958
- MSC (2010): Primary 33C10, 26A48; Secondary 39B62, 26A51
- DOI: https://doi.org/10.1090/proc/13522
- MathSciNet review: 3637943
Dedicated: This paper is dedicated to the 60th anniversary of Zhejiang Normal University