Aubert duals of strongly positive discrete series and a class of unitarizable representations
HTML articles powered by AMS MathViewer
- by Ivan Matić
- Proc. Amer. Math. Soc. 145 (2017), 3561-3570
- DOI: https://doi.org/10.1090/proc/13461
- Published electronically: January 11, 2017
- PDF | Request permission
Abstract:
Let $G_n$ denote either the group $Sp(n, F)$ or $SO(2n+1, F)$ over a non-archimedean local field $F$. We explicitly determine the Aubert duals of strongly positive discrete series representations of the group $G_n$. This enables us to construct a large class of unitarizable representations of this group.References
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179–2189 (French, with English summary). MR 1285969, DOI 10.1090/S0002-9947-1995-1285969-0
- Anne-Marie Aubert, Erratum: “Duality in the Grothendieck group of the category of finite-length smooth representations of a $p$-adic reductive group” [Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179–2189; MR1285969 (95i:22025)], Trans. Amer. Math. Soc. 348 (1996), no. 11, 4687–4690 (French). MR 1390967, DOI 10.1090/S0002-9947-96-01776-X
- Marcela Hanzer, The unitarizability of the Aubert dual of strongly positive square integrable representations, Israel J. Math. 169 (2009), 251–294. MR 2460906, DOI 10.1007/s11856-009-0011-3
- Ivan Matić, Strongly positive representations of metaplectic groups, J. Algebra 334 (2011), 255–274. MR 2787663, DOI 10.1016/j.jalgebra.2011.02.015
- Ivan Matić, Jacquet modules of strongly positive representations of the metaplectic group $\widetilde {Sp(n)}$, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2755–2778. MR 3020114, DOI 10.1090/S0002-9947-2012-05725-4
- Ivan Matić and Marko Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), no. 3-4, 437–476. MR 3360752, DOI 10.1007/s00229-015-0727-9
- Colette Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 295–336 (French, with English summary). MR 3220932, DOI 10.1090/conm/614/12254
- Colette Mœglin and Marko Tadić, Construction of discrete series for classical $p$-adic groups, J. Amer. Math. Soc. 15 (2002), no. 3, 715–786. MR 1896238, DOI 10.1090/S0894-0347-02-00389-2
- C. Mœglin and J.-L. Waldspurger, Sur l’involution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136–177 (French). MR 863522, DOI 10.1515/crll.1986.372.136
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571–587. MR 577138, DOI 10.2307/1971110
Bibliographic Information
- Ivan Matić
- Affiliation: Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia
- MR Author ID: 779049
- ORCID: 0000-0001-9264-9293
- Email: imatic@mathos.hr
- Received by editor(s): February 9, 2016
- Received by editor(s) in revised form: August 30, 2016
- Published electronically: January 11, 2017
- Communicated by: Alexander Braverman
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 3561-3570
- MSC (2010): Primary 22E35, 22E55, 11F70
- DOI: https://doi.org/10.1090/proc/13461
- MathSciNet review: 3652807