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TAMAGAWA NUMBERS OF ELLIPTIC CURVES

WITH C13 TORSION OVER QUADRATIC FIELDS
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(Communicated by Mathew A. Papanikolas)

Abstract. Let E be an elliptic curve over a number field K, cv the Tama-
gawa number of E at v, and let cE =

∏
v cv. Lorenzini proved that v13(cE)

is positive for all elliptic curves over quadratic fields with a point of order
13. Krumm conjectured, based on extensive computation, that the 13-adic
valuation of cE is even for all such elliptic curves. In this note we prove this
conjecture and furthermore prove that there is a unique such curve satisfying
v13(cE) = 2.

1. Introduction

Let K be a number field and E an elliptic curve defined over K. For every finite
prime v of K, denote by Kv the completion of K at v and by kv the residue field of
v. The subgroup E0(Kv) of E(Kv) consisting of points that reduce to nonsingular
points in E(kv) has finite index E(Kv), and one defines the Tamagawa number of
E at v to be this index cv := [E(Kv) : E0(Kv)].

We define cE to be

cE/K :=
∏
v

cv.

It will always be clear from the context which number field K we are working over,
so for brevity’s sake, we will write cE instead of cE/K .

Because the ratio cE/#E(K)tors appears as a factor in the leading term of the
L-function of E, by the Birch-Swinnerton–Dyer conjecture, it is natural to study
how the value of cE depends on E(K)tors. Many results describing how the value
cE depends on E(K)tors have been obtained by Lorenzini [9] for elliptic curves over
Q and quadratic fields and by Krumm in his PhD thesis [8, Chapter 5] for number
fields of degree up to 4.

Let us give a short explanation of how cE can depend on E(K)tors. Suppose for
simplicity that N = #E(K)tors is prime. Let E1(Kv) be the subgroup of E(Kv) of
points which reduce to the point at infinity in E(kv) and let Ens(kv) be the group
of nonsingular points in E(kv). There exists an exact sequence of abelian groups

0 −→ E1(Kv) −→ E0(Kv) −→ Ens(kv) −→ 0.

If v does not divide N , then there are no points of order N in E1(Kv), as E1(Kv)
is isomorphic to the formal group of E. If v is also small enough such that there
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cannot be any points of order N in Ens(kv), due to the Hasse bound, then it follows
that E0(Kv) does not have a point of order N . It then follows, by definition, that
N has to divide cv.

Throughout the paper Cn will denote a cyclic group of order n. Using the
argument above, Krumm showed (taking v to be a prime above 2 and N = 13) that
for all elliptic curves E over all quadratic fields K with E(K)tors � C13, the value
cE is divisible by 169 [8, Proposition 5.3.4]. Furthermore, he conjectured that for
all elliptic curves with torsion C13 over quadratic fields the value v13(cE) is even
[8, Conjecture 5.3.6]. The conjecture is true for the 48,925 such elliptic curves that
he tested.

In this note we prove this conjecture. More explicitly, we prove the following
theorem.

Theorem 1.1. Let E be an elliptic curve over a quadratic field K with E(K)tors �
C13. Then v13(cE) is a positive even integer.

Finally, in Theorem 4.1 we show that there is a unique elliptic curve E over any
quadratic field K such that v13(cE) = 2.

2. Elliptic curves with C13 torsion over quadratic fields

As we are looking at elliptic curves with C13 torsion, we are naturally led to
studying the modular curve X := X1(13). The K-rational points on the modular
curve Y1(13) correspond to isomorphism classes of pairs (E,P ), where E/K is an
elliptic curve and P ∈ E(K) is a point of order 13. The compactification X1(13)
of Y1(13) has genus 2 and in particular is hyperelliptic. There are six rational
cusps on X1(13), representing Néron 13-gons, and six cusps with field of definition
Q(ζ13)

+ = Q(ζ13 + ζ−1
13 ), the maximal real subfield of Q(ζ13), representing Néron

1-gons. For more on the moduli interpretation of the cusps of X1(n) see [4, Chapter
II] or [3, Section 9]. The diamond automorphism ι := 〈5〉 = 〈−5〉 which acts as
i((E,±P )) = (E,±5P ) is the hyperelliptic involution; we note that the fixed points
of ι lie outside the cusps.

The Q-rational points on X are all cusps. Both X and J have bad reduction
only at 13. For a prime v of Q(ζ13)

+ not dividing 13; the cusps in X(Q(ζ13)
+)

reduce bijectively to the cusps of X̃(kv), where X̃ is the reduction of X modulo v.
Reduction mod v is injective on J(Q(ζ13)

+)tors for all primes v of Q(ζ13)
+ not

dividing 13; this follows from [7, Appendix] for v � 2. For v | 2, injectivity follows
from the fact that J(Q(ζ13)

+) has no 2-torsion (this can easily be checked in Magma
[2]).

The Jacobian J := J1(13) has rank 0 over Q and J(Q) � Z/19Z; this fact was
originally proved by Mazur and Tate in [10]. We will need the rank of J over
Q(ζ13)

+.

Lemma 2.1. The rank of J(Q(ζ13)
+) is 0.

Proof. We use 2-descent, as implemented in the RankBound() function in Magma
[2], to prove this lemma. As Magma is unable, in reasonable time, to perform a
2-descent on J directly over Q(ζ13)

+, we do the following.
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Let F be the cubic subfield of Q(ζ13)
+; then [Q(ζ13)

+ : F ] = 2 and Q(ζ13)
+ =

F (
√
13). Thus we have that rk J(Q(ζ13)

+) = rk J(F )+rkJ13(F ), where J13 denotes
the Jacobian of the quadratic twist of X1(13) by 13. Magma computes rkJ(F ) =
rkJ13(F ) = 0, proving the claim. �

Remark 2.2. See [6] for a different proof, using the fact that X1(13) is bielliptic, of
the fact that rank of J(Q(ζ13)

+) is 0.

From [1, 11] it follows that all elliptic curves with C13 torsion over quadratic
fields are of the form

(1) Et : y
2 + axy + cy = x3 + bx2,

where

(2)

a =
(t− 1)2(t2 + t− 1)s− t7 + 2t6 + 3t5 − 2t4 − 5t3 + 9t2 − 5t+ 1

2
,

b =
t(t− 1)2((t5 + 2t4 − 5t2 + 4t− 1)s− t8 − t7 + 4t6 + 2t5 + t4 − 13t3 + 14t2 − 6t+ 1)

2
,

c = t5b,

for some t ∈ Q, and where

(3) s =
√
t6 − 2t5 + t4 − 2t3 + 6t2 − 4t+ 1.

The curve Et is defined over Q(s).
We will need the following two lemmas.

Lemma 2.3. If (E,P ) = x ∈ X(K) is a noncuspidal point, where K is a quadratic
field, then ι(x) = xσ, where σ is the generator of Gal(K/Q). In particular E is
isomorphic over K to Eσ.

Proof. See [1, Chapter 4] or [8, Theorem 2.6.9]. �

Lemma 2.4. Let E be an elliptic curve over a quadratic field K with E(K)tors �
C13. Let v be a prime such that 13 divides cv. Then E has split multiplicative
reduction at v.

Proof. This is well known; see for example [12, Corollary C.15.2.1, p. 447]. �

Lemma 2.5. Let (E,P ) = x ∈ X(K), let v be a prime of K such that v � 13 and
13|cv, let p be the rational prime below v and let v′ be a prime of Q(ζ13)

+ above p.
Then x mod v is equal to C mod v′ for a cusp C ∈ X(Q(ζ13)

+) such that C mod
v′ is Fp-rational.

Proof. Denote by x̃ the reduction of x mod v and denote by C the reduction of
C ∈ X(Q(ζ13)

+) mod v′. First note that x̃ = C, for some cusp C ∈ X(Q(ζ13)
+),

follows from the fact that all the cusps of X are defined over Q(ζ13)
+ and that the

cusps in X(Q(ζ13)
+) reduce bijectively mod v′ to the cusps of X(Fp).

We now divide the proof into two cases: when p ≡ ±1 (mod 13) and when
p 	≡ ±1 (mod 13).

Case 1 (p 	≡ ±1 (mod 13)). We claim that x̃ = C represents a Néron 13-gon, from
which it follows that C represents a Néron 13-gon; thus C is defined over Q and C
is Fp-rational.
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Suppose the opposite, that x̃ = C represents a Néron 1-gon. Hence P specializes
to the identity component of the special fiber of the Néron model of E at v. Since

P̃ is of order 13 and E has, by Lemma 2.4, split multiplicative reduction at v, it
follows that 13 divides the order of the multiplicative group Gm over kv, from which
it follows that 13 divides p2 − 1, which is a contradiction with our assumption.

Case 2 (p ≡ ±1 (mod 13)). Since p ≡ ±1 (mod 13), it follows that p splits com-
pletely in Q(ζ13)

+, the field over which all the cusps of X are defined. Hence it
follows that for every cusp C of X, C is Fp-rational.

�
Remark 2.6. Note that the case K ⊆ Q(ζ13)

+ (i.e. K = Q(
√
13)) is not possible,

since there exist no elliptic curves with C13 torsion over Q(
√
13) by [5, Theorem 3].

3. Proof of Theorem 1.1

Proposition 3.1. Let Et be an elliptic curve over a quadratic field K with
Et(K)tors � C13. Let v be a prime of K over a rational prime p such that 13
divides cv. Then p splits in K.

Proof. We split the proof into two cases: when v divides 13 and when it does not.

Case 1 (v does not divide 13). Let x be a noncuspidal point on X(K) and let v′ be
a prime of Q(ζ13)

+. Denote by ỹ the reduction of a y ∈ X(K) mod v and denote
by y the reduction of a y ∈ X(Q(ζ13)

+) mod v′.
Note that X(Q) consists purely of cusps, so x is not defined over Q. Suppose p

is inert or ramified, i.e. p = v or p = v2. Let x̃ = C and x̃σ = Cσ, for some cusps
C and Cσ; C and Cσ are Fp-rational by Lemma 2.5.

Recall that kv � Fp if p is split or ramified and kv � Fp2 if p is inert and that
the generator Frob v of Gal(kv/Fp) is nontrivial if and only if p is inert. We have

that, for a general x ∈ K, x̃σ = x̃Frob v 	= x̃ if p is inert, x̃σ 	= x̃Frob v = x̃ if p splits
and x̃σ = x̃Frob v = x̃ if p is ramified. If p is inert or ramified, it follows that

(4) Cσ = x̃σ = x̃Frob v = C
Frob v

= C.

It follows that [x̃+ x̃σ − 2C] = 0. Since [x+ xσ − 2C] is a Q(ζ13)
+-rational divisor

class, and hence a torsion point by Lemma 2.1, injectivity of reduction mod v′ on
J(Q(ζ13)

+)tors implies that [x+ xσ − 2C] = 0. Thus x+ xσ − 2C is a divisor of a
rational function g, and since x, xσ 	= C, g is of degree 2. Since the hyperelliptic
map is unique (up to an automorphism of P1), it follows that g : X → X/〈ι〉 � P1

is the same as quotienting out by the hyperelliptic involution ι. Thus ι permutes
the zeros and permutes the poles of g, from which it follows that C is fixed by ι,
which we know is not true.

Case 2 (v divides 13). As every elliptic curve Et with C13 torsion over a quadratic
field is of the form given in (1) and (2), it is clear that the reduction type of E
over a prime v over 13 depends only on the value of t mod 13 if v13(t) ≥ 0. An
easy computation shows that Et has multiplicative reduction only if v13(t) ≥ 0 and
t ≡ 0, 1 (mod 13) or if v13(t) < 0. In all these cases, 13 splits in Q(s). �
Proposition 3.2. Let E be an elliptic curve over a quadratic field K with
E(K)tors � C13. Let v be a prime over p such that 13 divides cv and σ the generator
of Gal(K/Q). Then v 	= vσ and cv(E) = cvσ (E).
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Proof. By Proposition 3.1, v 	= vσ. By Lemma 2.3 it follows that Eσ � E, and
hence cv(E) = cvσ (Eσ) = cvσ (E). �

From Proposition 3.2, it is clear that v13(
∏

v cv) is even. The fact that v13(c(E))
> 0 follows from [9, Proposition 1.3], proving Theorem 1.1.

4. The elliptic curve with smallest cE

Since we have 169|cEt
, it is natural to ask how many curves Et with C13 torsion

over quadratic fields satisfy v13(cEt
) = 2. In [8, Example 5.3.5] Krumm found a

single curve satisfying v13(cEt
) = 2. In fact, this curve satisfies cEt

= 169. We
prove that this curve is the unique curve having this property.

Theorem 4.1. The elliptic curve

(5) E2 : y2 + xy + y = x3 − x2 +
−541 + 131

√
17

2
x+ 3624− 879

√
17

is the only elliptic curve E over any quadratic field with C13 torsion such that
v13(cE) = 2; for all other such curves 134|cE.

Proof. We will show that for all curves not isomorphic to E2 with torsion C13

over quadratic fields, 134|cE . Let Et be an elliptic curve with C13 torsion over a
quadratic field. Then Et is of the form given by (1) and (2), for some t ∈ Q and
where s is given in (3). Then

Δ(Et) =
t13(t− 1)13(t3 − 4t2 + t+ 1)f(t, s)

2
,

where f(t, s) is a degree 42 polynomial, and

j(Et) =
(t2 − t + 1)3(t12 − 9t11 + 29t10 − 40t9 + 22t8 − 16t7 + 40t6 − 22t5 − 23t4 + 25t3 − 4t2 − 3t + 1)3

t13(t − 1)13(t3 − 4t2 + t + 1)
.

By [9, Corollary 3.4], if ℘ is a prime over 2, then 13|c℘ and it follows from
Proposition 3.1 (or [8, Theorem 2.6.9.]) that 2 splits in K.

Let ℘ be a prime of K not dividing 2. Suppose that m := v℘(t) > 0. Then it
follows that E/K has split multiplicative reduction modulo ℘ of type I13m (see
[9, Section 2.2] for details on how to check this explicitly). This implies that
v13(c℘(E)) > 0 by [12, Theorem VII.6.1]. By Proposition 3.2, it follows that
℘ 	= ℘σ and that E/K also has split multiplicative reduction modulo ℘σ and that
c℘(E) = c℘σ (E).

Now suppose that m := −v℘(t) > 0; then (1) is not an integral model of Et at
℘, but the equation with invariants

a1 =
(s − 1)z7 + (−3s + 5)z6 + (2s − 9)z5 + (s + 5)z4 + (−s + 2)z3 − 3z2 − 2z + 1

2
,

a2 =
z8(z − 1)2((s − 1)z8 + (−4s + 6)z7 + (5s − 14)z6 + 13z5 + (−2s − 1)z4 + (−s − 2)z3 − 4z2 + z + 1)

2
,

a3 =
z3(z − 1)2((s − 1)z8 + (−4s + 6)z7 + (5s − 14)z6 + 13z5 + (−2s − 1)z4 + (−s − 2)z3 − 4z2 + z + 1)

2
,

with z = t−1 integral in ℘. We compute that

Δ(Et) =
z13(z − 1)13(z3 + z2 − 4z + 1)g(z, s)

2
,
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where g(z, s) is a polynomial of degree 42. Again we obtain, using the same argu-
ments as before, that Et has split multiplicative reduction of type I13m at both ℘
and ℘σ.

The same argument as before shows that if v℘(t−1) 	= 0, then c℘(E) = c℘σ (E) =
13m for some positive integer m and that ℘ 	= ℘σ.

Thus if we want v13(cE) = 2, the primes above 2 are the only primes ℘ such that
13|c℘, which implies that the primes ℘ above 2 are the only primes ℘ such that
v℘(t) 	= 0 or v℘(t − 1) 	= 0. We see that the only possibilities are t = −1, 1

2 and 2.
All three values give the same curve E2. �

Remark 4.2. We expect there to be infinitely many nonisomorphic elliptic curves
Et with C13 torsion over quadratic fields such that v13(cEt

) = 4.
To see this, notice that v13(cEt

) = 4 if:

1) we put t = r/s, then rs(r − s) has exactly 2 prime divisors,
2) for all primes ℘ of OK , v℘

(
(t3 − 4t2 + t+ 1)f(t, s)

)
	= 13k, for k ∈ Z−{0}.

Condition 1) is true for {|r|, |s|, |r − s|} = {1, 2p − 1, 2p}, for p 	= 13 such that
2p − 1 is prime, i.e. a Mersenne prime, for {|r|, |s|, |r − s|} = {1, 2k, 2k + 1}, where
2k + 1 is a Fermat prime, or for {|r|, |s|, |r − s|} = {1, 8, 9}. Conjecturally, there
exist infinitely many Mersenne primes (and finitely many Fermat primes).

Heuristically, we expect condition 2) to be satisfied very often as there is no
reason to expect the appearance of 13k-th powers in the prime factorization of the
numerator or denominator of (t3−4t2+t+1)f(t, s). Together with the (conjectural)
infinitude of Mersenne primes, this should heuristically imply that there exists
infinitely many values t such that v13(cEt

) = 4.
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