Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations
HTML articles powered by AMS MathViewer
- by Jean-Marcel Fokam
- Proc. Amer. Math. Soc. 145 (2017), 4283-4297
- DOI: https://doi.org/10.1090/proc/12760
- Published electronically: July 10, 2017
- PDF | Request permission
Abstract:
We prove the existence of infinitely many classical large periodic solutions for a class of semilinear wave equations with periodic boundary conditions: \[ u_{tt}-u_{xx}+f(x,u)=0, \] \[ u(0,t)=u(\pi ,t) , u_x(0,t)=u_x(\pi ,t). \] Our argument relies on some new estimates for the linear problem with periodic boundary conditions, the Hausdorff-Young theorem of harmonic analysis and a variational formulation due to Rabinowitz. We also develop a new approach to the regularity of the distributional solutions by differentiating the equations and employing Gagliardo-Nirenberg estimates.References
- Dario Bambusi, Lyapunov center theorem for some nonlinear PDE’s: a simple proof, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 4, 823–837. MR 1822409
- D. Bambusi and S. Paleari, Families of periodic solutions of resonant PDEs, J. Nonlinear Sci. 11 (2001), no. 1, 69–87. MR 1819863, DOI 10.1007/s003320010010
- Vieri Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), no. 2, 533–572. MR 675067, DOI 10.1090/S0002-9947-1982-0675067-X
- Massimiliano Berti and Philippe Bolle, Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 609–642. MR 2592290, DOI 10.1007/s00205-008-0211-8
- Massimiliano Berti and Philippe Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys. 243 (2003), no. 2, 315–328. MR 2021909, DOI 10.1007/s00220-003-0972-8
- Massimiliano Berti and Philippe Bolle, Cantor families of periodic solutions for completely resonant nonlinear wave equations, Duke Math. J. 134 (2006), no. 2, 359–419. MR 2248834, DOI 10.1215/S0012-7094-06-13424-5
- Jean Bricmont, Antti Kupiainen, and Alain Schenkel, Renormalization group and the Melnikov problem for PDE’s, Comm. Math. Phys. 221 (2001), no. 1, 101–140. MR 1846903, DOI 10.1007/s002200100471
- Haïm Brézis, Jean-Michel Coron, and Louis Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), no. 5, 667–684. MR 586417, DOI 10.1002/cpa.3160330507
- Massimiliano Berti and Michela Procesi, Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equations 31 (2006), no. 4-6, 959–985. MR 2233048, DOI 10.1080/03605300500358129
- J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal. 5 (1995), no. 4, 629–639. MR 1345016, DOI 10.1007/BF01902055
- J.-Y. Chemin, $\textrm {Th\'eorie}$ des $\textrm {\'equations}$ d’$\textrm {\'evolution}$, http://www.ann.jussieu.fr/MathModel/ telechar.php?filename=polycopies/chemin.pdf
- Luigi Chierchia and Jiangong You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys. 211 (2000), no. 2, 497–525. MR 1754527, DOI 10.1007/s002200050824
- J.-M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (1983), no. 2, 273–285. MR 690201, DOI 10.1007/BF01455317
- Walter Craig and C. Eugene Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math. 46 (1993), no. 11, 1409–1498. MR 1239318, DOI 10.1002/cpa.3160461102
- Luciano de Simon and Giovanni Torelli, Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova 40 (1968), 380–401 (Italian). MR 228836
- E. R. Fadell, S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary $S^{1}$ actions and applications, Trans. Amer. Math. Soc. 274 (1982), no. 1, 345–360. MR 670937, DOI 10.1090/S0002-9947-1982-0670937-0
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- B. V. Lidskiĭ and E. I. Shul′man, Periodic solutions of the equation $u_{tt}-u_{xx}+u^3=0$, Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 88–89 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 4, 332–333 (1989). MR 977006, DOI 10.1007/BF01077432
- Hana Lovicarová, Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19(94) (1969), 324–342. MR 247249
- Jürgen Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv. 71 (1996), no. 2, 269–296. MR 1396676, DOI 10.1007/BF02566420
- Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31–68. MR 470378, DOI 10.1002/cpa.3160310103
- Paul H. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math. 37 (1984), no. 2, 189–206. MR 733716, DOI 10.1002/cpa.3160370203
- P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145–205. MR 206507, DOI 10.1002/cpa.3160200105
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Wilhem Schlag, notes, University of Chicago http://www.math.uchicago.edu/\textasciitilde schlag/book.pdf
- Xiaoping Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations 230 (2006), no. 1, 213–274. MR 2270553, DOI 10.1016/j.jde.2005.12.012
- C. Eugene Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), no. 3, 479–528. MR 1040892
- Michel Willem, Subharmonic oscillations of a semilinear wave equation, Nonlinear Anal. 9 (1985), no. 5, 503–514. MR 785721, DOI 10.1016/0362-546X(85)90009-4
- Zheng-Fang Zhou, The existence of periodic solutions of nonlinear wave equations on $S^n$, Comm. Partial Differential Equations 12 (1987), no. 8, 829–882. MR 891742, DOI 10.1080/03605308708820511
Bibliographic Information
- Jean-Marcel Fokam
- Affiliation: School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
- Email: fokam@aun.edu.ng
- Received by editor(s): February 12, 2012
- Received by editor(s) in revised form: September 13, 2013, September 3, 2014, and February 16, 2015
- Published electronically: July 10, 2017
- Communicated by: Walter Craig
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4283-4297
- MSC (2010): Primary 35B45, 35B10, 42B35, 49J35, 35J20, 35L10, 35L05
- DOI: https://doi.org/10.1090/proc/12760
- MathSciNet review: 3690613