Subgroup growth in some profinite Chevalley groups
HTML articles powered by AMS MathViewer
- by Inna Capdeboscq, Karina Kirkina and Dmitriy Rumynin
- Proc. Amer. Math. Soc. 145 (2017), 4187-4200
- DOI: https://doi.org/10.1090/proc/13567
- Published electronically: April 7, 2017
- PDF | Request permission
Abstract:
In this article we improve the known uniform bound for subgroup growth of Chevalley groups $\mathbf {G}(\mathbb {F}_p[[t]])$. We introduce a new parameter, the ridgeline number $v(\mathbf {G})$, and give new bounds for the subgroup growth of $\mathbf {G}(\mathbb {F}_p[[t]])$ expressed through $v(\mathbf {G})$. We achieve this by deriving a new estimate for the codimension of $[U,V]$ where $U$ and $V$ are vector subspaces in the Lie algebra of $\mathbf {G}$.References
- Miklós Abért, Nikolay Nikolov, and Balázs Szegedy, Congruence subgroup growth of arithmetic groups in positive characteristic, Duke Math. J. 117 (2003), no. 2, 367–383. MR 1971298, DOI 10.1215/S0012-7094-03-11726-3
- Yiftach Barnea and Robert Guralnick, Subgroup growth in some pro-$p$ groups, Proc. Amer. Math. Soc. 130 (2002), no. 3, 653–659. MR 1866015, DOI 10.1090/S0002-9939-01-06099-3
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- V. Kac and B. Weisfeiler, Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic $p$, Indag. Math. 38 (1976), no. 2, 136–151. Nederl. Akad. Wetensch. Proc. Ser. A 79. MR 0417308
- Alexander Lubotzky and Avinoam Mann, On groups of polynomial subgroup growth, Invent. Math. 104 (1991), no. 3, 521–533. MR 1106747, DOI 10.1007/BF01245088
- Alexander Lubotzky and Aner Shalev, On some $\Lambda$-analytic pro-$p$ groups, Israel J. Math. 85 (1994), no. 1-3, 307–337. MR 1264349, DOI 10.1007/BF02758646
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- Alexander Premet, An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2961–2988. MR 1290730, DOI 10.1090/S0002-9947-1995-1290730-7
- Aner Shalev, Growth functions, $p$-adic analytic groups, and groups of finite coclass, J. London Math. Soc. (2) 46 (1992), no. 1, 111–122. MR 1180887, DOI 10.1112/jlms/s2-46.1.111
- University of Georgia VIGRE Algebra Group, Varieties of nilpotent elements for simple Lie algebras. II. Bad primes, J. Algebra 292 (2005), no. 1, 65–99. The University of Georgia VIGRE Algebra Group: David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, G. Michael Guy, Jeremiah Hower, Markus Hunziker, Jo Jang Hyun, Jonathan Kujawa, Graham Matthews, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt and Caroline Wright. MR 2166796, DOI 10.1016/j.jalgebra.2004.12.023
- Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935–936. MR 1610801, DOI 10.1090/S0002-9939-99-04946-1
Bibliographic Information
- Inna Capdeboscq
- Affiliation: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: I.Capdeboscq@warwick.ac.uk
- Karina Kirkina
- Affiliation: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: K.Kirkina@warwick.ac.uk
- Dmitriy Rumynin
- Affiliation: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 352518
- ORCID: 0000-0001-9507-3058
- Email: D.Rumynin@warwick.ac.uk
- Received by editor(s): November 13, 2015
- Received by editor(s) in revised form: August 31, 2016, October 25, 2016, and November 2, 2016
- Published electronically: April 7, 2017
- Communicated by: Pham Huu Tiep
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4187-4200
- MSC (2010): Primary 20E07; Secondary 17B45, 17B70
- DOI: https://doi.org/10.1090/proc/13567
- MathSciNet review: 3690605