Bifurcations in the elementary Desboves family
HTML articles powered by AMS MathViewer
- by Fabrizio Bianchi and Johan Taflin
- Proc. Amer. Math. Soc. 145 (2017), 4337-4343
- DOI: https://doi.org/10.1090/proc/13579
- Published electronically: May 4, 2017
- PDF | Request permission
Abstract:
We give an example of a family of endomorphisms of $\mathbb {P}^2(\mathbb {C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.References
- François Berteloot, Fabrizio Bianchi, and Christophe Dupont, Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of $\mathbb {P}^k$, arXiv:1403.7603, to appear in Annales scientifiques de l’Ecole Normale Supérieure.
- Jean-Yves Briend and Julien Duval, Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de $\mathbf C\textrm {P}^k$, Acta Math. 182 (1999), no. 2, 143–157 (French). MR 1710180, DOI 10.1007/BF02392572
- Araceli M. Bonifant and Marius Dabija, Self-maps of ${\Bbb P}^2$ with invariant elliptic curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 1–25. MR 1940161, DOI 10.1090/conm/311/05444
- Araceli Bonifant, Marius Dabija, and John Milnor, Elliptic curves as attractors in $\Bbb P^2$. I. Dynamics, Experiment. Math. 16 (2007), no. 4, 385–420. MR 2378483
- Fabrizio Bianchi, Motions of Julia sets and dynamical stability in several complex variables, Ph.D. thesis, Université Toulouse III Paul Sabatier and Universitá di Pisa, 2016.
- Marius Viorel Dabija, Algebraic and geometric dynamics in several complex variables, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of Michigan. MR 2700930
- Laura DeMarco, Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8 (2001), no. 1-2, 57–66. MR 1825260, DOI 10.4310/MRL.2001.v8.n1.a7
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI 10.1007/978-3-642-13171-4_{4}
- M. Yu. Lyubich, Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198 (Russian). MR 718838
- Ricardo Mané, Paulo Sad, and Dennis Sullivan, On the dynamics of rational maps, Annales scientifiques de l’École Normale Supérieure, 16(2):193–217, 1983.
- Johan Taflin, Invariant elliptic curves as attractors in the projective plane, J. Geom. Anal. 20 (2010), no. 1, 219–225. MR 2574729, DOI 10.1007/s12220-009-9104-9
Bibliographic Information
- Fabrizio Bianchi
- Affiliation: Department of Mathematics, Imperial College, South Kensington Campus, London SW7 2AZ, United Kingdom
- MR Author ID: 1144484
- Email: f.bianchi@imperial.ac.uk
- Johan Taflin
- Affiliation: Institut de Mathématiques de Bourgogne, Université de Bourgogne Franche-Comté, UMR CNRS 5584, 21078 Dijon Cedex, France
- MR Author ID: 889224
- Email: johan.taflin@u-bourgogne.fr
- Received by editor(s): July 13, 2016
- Received by editor(s) in revised form: October 19, 2016
- Published electronically: May 4, 2017
- Additional Notes: The first author was partially supported by the ANR project LAMBDA, ANR-13-BS01-0002 and by the FIRB2012 grant “Differential Geometry and Geometric Function Theory”, RBFR12W1AQ 002.
- Communicated by: Franc Forstneric
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4337-4343
- MSC (2010): Primary 32H50, 37F45
- DOI: https://doi.org/10.1090/proc/13579
- MathSciNet review: 3690617