POSITIVE RADIAL SOLUTIONS OF A MEAN CURVATURE EQUATION IN MINKOWSKI SPACE WITH STRONG SINGULARITY

MINGHE PEI AND LIBO WANG

Abstract. The existence of positive radial solution is obtained for a mean curvature equation in Minkowski space of the form
\[\begin{cases} \text{div}\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}} \right) + f(|x|, v) = 0 & \text{in } \Omega; \\ v = 0 & \text{on } \partial \Omega, \end{cases} \]
where \(\Omega \) is a unit ball in \(\mathbb{R}^N \), \(f(r, u) \) has singularities at \(u = 0 \), \(r = 0 \) and/or \(r = 1 \). The main tool is the perturbation technique and nonlinear alternative of Leray-Schauder type. The interesting point is that the nonlinear term \(f(r, u) \) at \(u = 0 \) may be strongly singular.

1. Introduction

In this paper, we will consider a strongly singular Dirichlet problem involving the mean curvature operator in Minkowski space of the form
\[\begin{cases} \text{div}\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}} \right) + f(|x|, v) = 0 & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega, \end{cases} \]
where \(f(r, u) \) is nonnegative and continuous on \((0, 1) \times (0, +\infty) \) and may be singular at \(r = 0 \) and/or \(r = 1 \) and strongly singular at \(u = 0 \) and \(\Omega \) is a unit ball in \(\mathbb{R}^N \). The model example is
\[f(r, u) = r^{-\gamma}(au^{-\alpha} + bu^\beta + 1); \]
here \(\beta, \gamma, a, b \) are positive constants with \(\gamma < 1 \) and \(\alpha > 1 \).

In recent years, the Dirichlet problem involving the mean curvature operator in Minkowski space has been discussed by many authors and many excellent results have been obtained, for instance, see [1]–[8], [11] and the references therein. However, most of the results in the above mentioned references are concerned with nonsingular problems, there are only a few works on weakly singular problems; see [5], [11]. To the best knowledge of the authors, no work has been done for the strongly singular Dirichlet problem (1.1).
Motivated by the results mentioned above and [9], the purpose of this paper is to establish the existence results of positive solutions of problem (1.1) by applying the perturbation technique and nonlinear alternative of Leray-Schauder type.

Throughout this paper, we make the following assumptions:

(C_1) function $f \in C((0, 1) \times (0, +\infty), [0, +\infty))$ has the decomposition

$$f(r, u) = q(r)(g(u) + h(u)),$$

where $q \in C((0, 1), (0, +\infty))$ with $\int_0^1 q(r)dr < +\infty$, $g \in C((0, +\infty), (0, +\infty))$ is nonincreasing on $(0, +\infty)$, $h \in C([0, +\infty), [0, +\infty))$, and h/g is nondecreasing on $(0, +\infty)$;

(C_2) there exists a constant $r^* > 0$ such that

$$\frac{1}{1 + h(r^*)/g(r^*)} \int_0^{r^*} \frac{dr}{g(r)} > \int_0^1 \frac{1}{r^{N-1}} \int_0^t \tau^{N-1}q(\tau)d\tau dt.$$

2. Main Results

In order to obtain the existence results of positive radial solutions for problem (1.1), setting $r = |x|$ and $v(x) = u(r)$, we reduce the problem (1.1) to

\[
\begin{aligned}
(r^{N-1} \phi(u'))' + r^{N-1} f(r, u) &= 0, \quad r \in (0, 1), \\
\phi(r(0)) &= 0, \quad \phi(r(1)) = 0,
\end{aligned}
\]

where $\phi(s) = s/\sqrt{1 - s^2}$.

In this paper, we say that a function $u(r)$ is a positive solution of problem (2.1) if $u \in C[0, 1] \cap C^1[0, 1]$ with $u(r) > 0$ on $[0, 1]$ be such that $(r^{N-1} \phi(u'(r)))' + r^{N-1} f(r, u(r)) = 0$ holds for all $r \in (0, 1)$ and $u'(0) = 0$, $u(1) = 0$.

Lemma 2.1. Let $w \in C((0, 1), (0, +\infty))$ with $\int_0^1 w(r)dr < +\infty$. Then, the following problem

\[
\begin{aligned}
(r^{N-1} \phi(w'))' + r^{N-1} w(r) &= 0, \quad r \in (0, 1), \\
w'(0) &= 0, \quad w(1) = 0
\end{aligned}
\]

has a unique solution $u \in C[0, 1] \cap C^1[0, 1]$.

Proof. From the assumptions on w,

$$\frac{1}{r^{N-1}} \int_0^r \tau^{N-1}w(\tau)d\tau \in C(0, 1)$$

and

$$\frac{1}{r^{N-1}} \int_0^r \tau^{N-1}w(\tau)d\tau \to 0 \text{ as } r \to 0^+.$$

Then integrating both sides of equation of (2.2) on $[0, r] \subset [0, 1)$, we get

$$u'(r) = -\phi^{-1}\left(\frac{1}{r^{N-1}} \int_0^r \tau^{N-1}w(\tau)d\tau\right), \quad r \in [0, 1).$$

Integrating both sides of the above equality from r to 1, the unique solution of problem (2.2)

$$u(r) = \int_r^1 \phi^{-1}\left(\frac{1}{r^{N-1}} \int_0^r \tau^{N-1}w(\tau)d\tau\right)dt, \quad r \in [0, 1)$$

is obtained. Also, since $\int_r^1 \phi^{-1}\left(\frac{1}{r^{N-1}} \int_0^r \tau^{N-1}w(\tau)d\tau\right)dt \to 0$ as $r \to 1^-$, it follows that $u \in C[0, 1] \cap C^1[0, 1)$. This completes the proof of the lemma. \qed
Let $P = \{ u \in C[0,1] : u(r) \text{ is nonnegative and nonincreasing on } [0,1] \}$, then P is a convex set in $C[0,1]$.

Let $n \in \mathbb{N} = \{1, 2, \ldots \}$ be a fixed natural number. Now, we consider the modified problem

\[(2.3)\]
\[
\begin{align*}
(r^{N-1}\phi'(w))' + r^{N-1}f^*(r, w(r)) &= 0, & r \in (0,1), \\
u'(0) &= 0, & u(1) = \frac{1}{n},
\end{align*}
\]

where $w \in P$ and $f^*(r, u) = q(r)(g(u) + h(u))$ with

\[g^*(u) = \begin{cases}
 g(u), & u \geq \frac{1}{n}, \\
 g\left(\frac{1}{n}\right), & n \leq \frac{1}{n}.
\end{cases}\]

It is easy to see that $g^* \in C[0, +\infty)$ is nonincreasing on $[0, +\infty)$ and $g^*(u) \leq g(u), \forall u \in (0, +\infty)$ if condition (C_1) holds.

By Lemma 2.1, we have the following.

Lemma 2.2. Assume that condition (C_1) is satisfied. Then, for each fixed $w \in P$, problem (2.3) has a unique solution $u \in P$ with

\[u(r) = (Tw)(r),\]

where

\[(2.4)\]
\[(Tw)(r) := \frac{1}{n} + \int_0^1 \phi^{-1}\left(\frac{1}{t^{N-1}} \int_0^t \tau^{N-1}f^*(\tau, w(\tau))d\tau\right)dt, \quad w \in P.\]

Lemma 2.3. Assume $w \in P$ and $f_i(r, u) = q(r)(g_i(u) + h_i(u))$ ($i = 1, 2$) satisfies condition (C_1). Let $u_i(r)$ be a solution of problem (2.3) with $f^*(r, u) = f_i^*(r, u)$, $i = 1, 2$, respectively. If $f_1^*(r, w(r)) \leq f_2^*(r, w(r))$ on $(0,1)$, then $u_1(r) \leq u_2(r)$ on $[0,1]$.

Proof. It is a direct consequence of formula (2.4) and from the fact that integrals respect order and that ϕ^{-1} is nondecreasing. This completes the proof of the lemma.

Let $v_M(r)$ be a positive solution to problem (2.2) with $w(r) = Mq(r)$ ($M > 0$) and $v_m(r)$ be a positive solution to problem (2.2) with $w(r) = mq(r)$ ($m > 0$).

By Lemmas 2.1–2.3, we have the following remarks.

Remark 2.1. Let $w \in P$ and $u(r)$ be a solution to problem (2.3) with $f^*(r, w(r)) \leq Mq(r)$. Then $u(r) \leq 1/n + v_M(r)$ on $[0,1]$, that is, $(Tw)(r) \leq 1/n + v_M(r)$ on $[0,1]$.

Remark 2.2. Let $w \in P$ and $u(r)$ be a solution to problem (2.3) with $f^*(r, w(r)) \geq mq(r)$. Then $u(r) \geq 1/n + v_m(r)$ on $[0,1]$, that is, $(Tw)(r) \geq 1/n + v_m(r)$ on $[0,1]$.

Lemma 2.4. Assume that condition (C_1) is satisfied. Then, for any bounded and closed set $K \subset P$, the set $T(K)$ is equicontinuous on $[0,1]$.

Proof. We note that the set $\{(Tw)'(r) : w \in K\}$ is uniformly bounded on $(0,1)$, and hence the lemma follows from the mean value theorem for differentiable functions. This completes the proof of the lemma.

Lemma 2.5. Assume that condition (C_1) is satisfied. Then, for any bounded and closed set $K \subset P$, the mapping $T : K \to P$ is continuous.
Proof. Assume that \(\{w_k\}_{k=0}^{\infty} \subset K \) and \(w_k(r) \) converges to \(w_0 \in K \) uniformly on \([0,1]\). Then there exists an \(M > 0 \) such that

\[
0 \leq f^*(r, w_k(r)) \leq M q(r) \quad \text{on} \quad [0,1],
\]

and hence from Remark 2.1, it follows that

\[
0 \leq (Tw_k)(r) \leq 1/n + v_M(r) \quad \text{on} \quad [0,1],
\]

i.e., \(\{(Tw_k)(r)\} \) is uniformly bounded on \([0,1]\). This together with Lemma 2.4 implies that \(\{(Tw_k)(r)\} \) is uniformly bounded and equicontinuous on \([0,1]\). So from the Arzela-Ascoli Theorem, there exist uniformly convergent subsequences in \(\{(Tw_k)(r)\} \). Let \(\{(Tw_{k_j})(r)\} \) be a any subsequence of \(\{(Tw_k)(r)\} \) which converges to \(v(r) \) uniformly on \([0,1]\). Notice that (2.5) and

\[
(Tw_{k_j})(r) = \frac{1}{n} + \int_0^1 \frac{1}{N-1} \int_0^t \tau^{N-1} f^*(\tau, w_{k_j}(\tau)) d\tau dt,
\]

by Lebesgue dominated convergence theorem, we have

\[
v(r) = \frac{1}{n} + \int_0^1 \frac{1}{N-1} \int_0^t \tau^{N-1} f^*(\tau, w_0(\tau)) d\tau dt,
\]

i.e., \(v(r) \equiv (Tw_0)(r) \) on \([0,1]\). This shows that each convergent subsequence of \(\{(Tw_k)(r)\} \) uniformly converges to \((Tw_0)(r) \) on \([0,1]\). Therefore, the sequence \(\{(Tw_k)(r)\} \) itself uniformly converges to \((Tw_0)(r) \) on \([0,1]\). Therefore, \(T \) is continuous on \(K \). This completes the proof of the lemma. \(\square \)

Combining Lemmas 2.4 and 2.5 and Remark 2.1, we have the following lemma.

Lemma 2.6. Assume that condition \((C_1)\) is satisfied. Then, the mapping \(T : P \to P \) is completely continuous.

Our existence principles will be proved by using the following fixed point result.

Lemma 2.7 \([10]\). Assume that \(U \) is a relatively open subset of a convex set \(C \) in a normal space \(E \). Let \(T : \bar{U} \to C \) be a compact map with \(0 \in U \). Then either

(A1) \(T \) has a fixed point in \(\bar{U} \); or
(A2) there is an \(x \in \partial U \) and a \(\lambda \in (0,1) \) such that \(x = \lambda Tx \).

Theorem 2.1. Assume that conditions \((C_1)\) and \((C_2)\) are satisfied. Then, the problem \((1.1)\) has at least one positive radial solution \(v = u(r) \) with \(\|u\| < r^* \).

Proof. It is sufficient to show that problem (2.1) has at least one positive solution, \(u = u(r) \) with \(\|u\| < r^* \).

We choose \(\varepsilon \in (0,r^*) \) such that

\[
\frac{1}{1 + h(r^*)/g(r^*)} \int_\varepsilon^{r^*} \frac{dr}{g(r)} > \int_0^1 \frac{1}{N-1} \int_0^t \tau^{N-1} q(\tau) d\tau dt.
\]

Let \(n_0 \in \mathbb{N} \) be chosen such that \(1/n_0 < \varepsilon \) and let \(\mathbb{N}_{n_0} = \{n_0, n_0 + 1, \ldots\} \).

We first show that the following problem

\[
(2.7)_n \quad \left\{ \begin{array}{ll}
(r^{N-1}\phi(u'))' + r^{N-1} f(r, u) = 0, \quad r \in (0,1), \\
u'(0) = 0, \quad u(1) = \frac{1}{n}, \quad n \in \mathbb{N}_{n_0},
\end{array} \right.
\]

has a solution \(u_n \) with \(u_n(r) > 1/n \) on \([0,1]\) and \(\|u_n\| < r^* \) for \(n \in \mathbb{N}_{n_0} \).

To do this, we deal with the modified problem
\[(2.8)_n \quad \left\{ \begin{array}{l}
(r^{N-1}\phi(u'))' + r^{N-1}f^*(r, u) = 0, \quad r \in (0, 1), \\
u'(0) = 0, \quad u(1) = \frac{1}{n}, \quad n \in \mathbb{N}_{n_0},
\end{array} \right.
\]
where \(f^*\) is defined by (2.3).

Fix \(n \in \mathbb{N}_{n_0}\). Let \(T : \bar{\Omega}_{r^*} \to P\) be defined by (2.4), i.e.,
\[(Tu)(r) := \frac{1}{n} + \int_0^1 \phi^{-1}(\frac{1}{t^{N-1}} \int_0^t \tau^{N-1} f^*(\tau, u(\tau))d\tau)dt, \quad u \in \bar{\Omega}_{r^*},
\]
where \(\Omega_{r^*} = P \cap \{u \in C[0, 1] : \|u\| < r^*\}\). Then, from Lemma 2.6, \(T : \bar{\Omega}_{r^*} \to P\) is completely continuous.

We now show that
\[(2.9) \quad u \neq \lambda Tu, \quad \text{for } \lambda \in (0, 1), \quad u \in \partial \Omega_{r^*}.
\]
Assume by contradiction, there exist a \(\lambda_0 \in (0, 1)\) and \(u_0 \in \partial \Omega_{r^*}\) such that \(u_0 = \lambda_0 Tu_0 \in P\). Then, \(u_0(0) = r^*\) and
\[\left\{ \begin{array}{l}
(r^{N-1}\phi(u_0'/(r/\lambda_0)))' + r^{N-1}f^*(r, u_0) = 0, \quad r \in (0, 1), \\
u_0'(0) = 0, \quad u_0(1) = \frac{\lambda_0}{n}, \quad n \in \mathbb{N}_{n_0}.
\end{array} \right.
\]
Notice that
\[f^*(r, u_0(r)) \leq q(r)(g(u_0(r)) + h(u_0(r))), \quad r \in (0, 1),\]
we have
\[(2.10) \quad -(r^{N-1}\phi(u_0'/(r/\lambda_0)))' \leq r^{N-1}q(r)g(u_0(r)) \left(1 + \frac{h(u_0(r))}{g(u_0(r))}\right), \quad r \in (0, 1).
\]
Integrate both sides of (2.10) from 0 to \(t (0 \leq t < 1)\), then from condition (C_1) and the fact \(u_0 \in P\), it follows that
\[-t^{N-1}\phi(u_0'(t)/\lambda_0) \leq \left(1 + \frac{h(r^*)}{g(r^*)}\right) g(u_0(t)) \int_0^t \tau^{N-1}q(\tau)d\tau,
\]
and hence we obtain
\[-u_0'(t) \leq \frac{\lambda_0}{t^{N-1}} \left(1 + \frac{h(r^*)}{g(r^*)}\right) g(u_0(t)) \int_0^t \tau^{N-1}q(\tau)d\tau \]
Consequently,
\[(2.11) \quad -\frac{u_0'(t)}{g(u_0(t))} \leq \frac{1}{t^{N-1}} \left(1 + \frac{h(r^*)}{g(r^*)}\right) \int_0^t \tau^{N-1}q(\tau)d\tau.
\]
Also, integrating both sides of (2.11) from 0 to 1, one has
\[
\int_{r_0/n}^{r^*} \frac{dr}{g(r)} \leq \left(1 + \frac{h(r^*)}{g(r^*)}\right) \int_0^1 \left(\frac{1}{t^{N-1}} \int_0^t \tau^{N-1}q(\tau)d\tau\right)ds,
\]
and so
\[(2.12) \quad \int_{r_0/n}^{r^*} \frac{dr}{g(r)} \leq \left(1 + \frac{h(r^*)}{g(r^*)}\right) \int_0^1 \left(\frac{1}{t^{N-1}} \int_0^t \tau^{N-1}q(\tau)d\tau\right)ds.
\]
This contradicts (2.6), and thus (2.9) is true.

Now Lemma 2.7 implies that \(T\) has a fixed point \(u_n \in \bar{\Omega}_{r^*}\) which is a solution of \((2.8)_n\) with \(1/n \leq \|u_n\| < r^*\)(note if \(\|u_n\| = r^*\), then following essentially the
same argument from (2.10)–(2.12) will yield a contradiction. Since \(u_n(r) \geq 1/n \) on \([0, 1]\), we know that \(u_n(r) \) is a solution of (2.7)\(_n\) also.

Since \(u_n(r) \leq r^* \) on \([0, 1]\), then from condition \((C_1) \) it follows that \(f^*(r, u_n(r)) = q(r)(g(u_n(r)) + h(u_n(r))) \geq q(r)g(r^*) \) on \([0, 1]\). Hence, by Remark 2.2, we have

\[
(2.13) \quad u_n(r) \geq \frac{1}{n} + v_{g(r^*)}(r), \quad \forall r \in [0, 1],
\]

where \(v_{g(r^*)}(r) > 0 \) on \([0, 1]\).

Next, we claim that

\[
(2.14) \quad \{u_n(r)\}_{n \in \mathbb{N}_{n_0}} \text{ is a bounded and equicontinuous family on } [0, 1].
\]

In fact, note that \(0 \leq \|u_n\| < r^* \) for each \(n \in \mathbb{N}_{n_0} \), then \(\{u_n(r)\}_{n \in \mathbb{N}_{n_0}} \) is bounded on \([0, 1]\). Also, since for each \(n \in \mathbb{N}_{n_0} \), \(|u_n'(r)| = |(Tu_n)''(r)| < 1 \) on \((0, 1)\), and from the mean value theorem for differentiable functions, \(\{u_n(r)\}_{n \in \mathbb{N}_{n_0}} \) is equicontinuous on \([0, 1]\). Thus (2.14) is true.

The Arzela-Ascoli theorem guarantees the existence of a subsequence \(\{u_{n_j}(r)\}_{j=1}^\infty \subset \{u_n(r)\}_{n \in \mathbb{N}_{n_0}} \) with \(u_{n_j} \) converging to \(u \) in \(C[0, 1] \) as \(j \to \infty \). Clearly, \(u(1) = 0 \) and by (2.13), \(u(r) \geq v_{g(r^*)}(r) \) on \([0, 1]\). In particular, \(u(r) > 0 \) on \([0, 1]\). Fixing \(r \in (0, 1) \), then for any \(\eta \in (0, 1-r) \) we have

\[
u_{n_j}(r) = u_{n_j}(1-\eta) + \int_{r}^{1-\eta} \phi^{-1}(\frac{1}{tN-1}) \int_{0}^{t} \tau^{N-1} f(\tau, u_{n_j}(\tau))d\tau dt.
\]

Notice that \(g(\cdot) + h(\cdot) \) is uniformly continuous on a compact subset of \((0, r^*)\), let \(j \to \infty \) in the above equality, and it follows that

\[
u(r) = u(1-\eta) + \int_{r}^{1-\eta} \phi^{-1}(\frac{1}{tN-1}) \int_{0}^{t} \tau^{N-1} f(\tau, u(\tau))d\tau dt.
\]

Also, let \(\eta \to 0^+ \) in the above equality and one has

\[
u(r) = \int_{r}^{1} \phi^{-1}(\frac{1}{tN-1}) \int_{0}^{t} \tau^{N-1} f(\tau, u(\tau))d\tau dt, \quad r \in [0, 1),
\]

and so

\[
u'(r) = -\phi^{-1}(\frac{1}{rN-1}) \int_{0}^{r} \tau^{N-1} f(\tau, u(\tau))d\tau, \quad r \in [0, 1),
\]

thus \(\nu'(0) = 0 \). Then we have

\[
\left\{ \begin{array}{l}
(rN-1\phi(u'(r)))' + rN-1f(r, u(r)) = 0, \quad r \in (0, 1),
\nu'(0) = 0, \quad u(1) = 0.
\end{array} \right.
\]

Finally, it is easy to see that \(\|u\| < r^* \) (note, if \(\|u\| = r^* \), then following essentially the same argument from (2.10)–(2.12) will yield a contradiction). This completes the proof of the theorem.

Finally, we give two examples to illustrate our result.

Example 2.1. Consider the strongly singular problem

\[
(2.15) \quad \left\{ \begin{array}{l}
\text{div} \left(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}} \right) + \lambda (av^{-\alpha} + bv^{\beta} + 1) = 0 \quad \text{in } \Omega,
\vspace{0.1cm}
\vspace{0.1cm}
\vspace{0.1cm}
v = 0 \quad \text{on } \partial \Omega,
\end{array} \right.
\]

where \(a, b, \alpha, \beta \) are positive constants, \(\lambda > 0 \) is a parameter, and \(\Omega \) is a unit ball in \(\mathbb{R}^N \).
Let
\[f(r, u) = \lambda (au^{-\alpha} + bu^\beta + 1) =: q(r)(g(u) + h(u)), \]
where
\[q(r) = \lambda, \quad g(u) = au^{-\alpha}, \quad h(u) = bu^\beta + 1. \]
It is easy to see that the function \(f \) satisfies condition \((C_1)\). We now choose \(r^* = 1 \).

Then
\[\frac{1}{1 + h(r^*)/g(r^*)} \int_0^{r^*} \frac{dr}{g(r)} = \frac{1}{(a + b + 1)(\alpha + 1)}. \]

On the other hand,
\[\int_0^1 \frac{1}{t^{N-1}} \int_0^t \tau^{N-1} q(\tau) d\tau dt = \frac{\lambda}{2N}. \]

Hence, when \(\lambda < \frac{2N}{(a + b + 1)(\alpha + 1)} \), the function \(f \) satisfies condition \((C_2)\). So from Theorem 2.1, the strongly singular problem \((2.15)\) has at least one positive radial solution \(v(x) = u(r) \) with \(\|u\| < 1 \) provided the positive parameter \(\lambda < \frac{2N}{(a + b + 1)(\alpha + 1)} \).

Example 2.2. Consider the strongly singular problem
\[
\begin{align*}
\text{div} \left(\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}} \right) + \lambda |x|^{-\gamma} (au^{-\alpha} + u^\beta) & = 0 \quad \text{in} \quad \Omega, \\
v & = 0 \quad \text{on} \quad \partial \Omega,
\end{align*}
\]
where \(\alpha, \beta, \gamma, a \) are positive constants with \(\gamma \in (0, 1) \), \(\lambda > 0 \) is a parameter, \(\Omega \) is a unit ball in \(\mathbb{R}^N \).

Let
\[f(r, u) = \lambda r^{-\gamma} (au^{-\alpha} + u^\beta) =: q(r)(g(u) + h(u)), \]
where
\[q(r) = \lambda r^{-\gamma}, \quad g(u) = au^{-\alpha}, \quad h(u) = u^\beta. \]
It is easy to see that function \(f \) satisfies condition \((C_1)\). Choosing \(r^* = 1 \), then
\[\frac{1}{1 + h(r^*)/g(r^*)} \int_0^{r^*} \frac{dr}{g(r)} = \frac{1}{(\alpha + 1)(\alpha + 1)}. \]

On the other hand,
\[\int_0^1 \frac{1}{t^{N-1}} \int_0^t \tau^{N-1} q(\tau) d\tau dt = \frac{\lambda}{(N - \gamma)(2 - \gamma)}. \]

Hence, if \(\lambda < \frac{(N - \gamma)(2 - \gamma)}{(\alpha + 1)(\alpha + 1)} \), then function \(f \) satisfies condition \((C_2)\). So from Theorem 2.1, the strongly singular problem \((2.16)\) has at least one positive radial solution \(v(x) = u(r) \) with \(\|u\| < 1 \) provided the positive parameter \(\lambda < \frac{(N - \gamma)(2 - \gamma)}{(\alpha + 1)(\alpha + 1)} \).

Acknowledgement

The authors thank the referee for valuable suggestions which led to improvement of the original manuscript.
References

School of Mathematics and Statistics, Beihua University, JiLin City 132013, People’s Republic of China

E-mail address: peiminghe@163.com

School of Mathematics and Statistics, Beihua University, JiLin City 132013, People’s Republic of China

E-mail address: wlb_math@163.com