Cesàro average in short intervals for Goldbach numbers
HTML articles powered by AMS MathViewer
- by Alessandro Languasco and Alessandro Zaccagnini
- Proc. Amer. Math. Soc. 145 (2017), 4175-4186
- DOI: https://doi.org/10.1090/proc/13645
- Published electronically: May 4, 2017
- PDF | Request permission
Abstract:
Let $\Lambda$ be the von Mangoldt function and \begin{equation*} R(n) = \sum _{h+k=n} \Lambda (h)\Lambda (k). \end{equation*} Let further $N,H$ be two integers, $N\ge 2$, $1\le H \le N$, and assume that the Riemann Hypothesis holds. Then \begin{align*} \sum _{n=N-H}^{N+H} R(n) \Bigl (1- \frac {\vert n- N \vert }{H}\Bigr ) &= HN -\frac {2}{H} \sum _{\rho } \frac {(N+H)^{\rho +2} - 2 N^{\rho +2} +(N-H)^{\rho +2} }{\rho (\rho + 1)(\rho + 2)} \\& + \mathcal {O}\Bigl ({N \Bigl (\log \frac {2N}{H}\Bigr )^2 + H (\log N)^2 \log (2H) }\ , \end{align*} where $\rho =1/2+i\gamma$ runs over the non-trivial zeros of the Riemann zeta function $\zeta (s)$.References
- D. A. Goldston and L. Yang, The Average Number of Goldbach Representations, arXiv.org, 2016. http://arxiv.org/abs/1601.06902.
- G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, DOI 10.1007/BF02403921
- A. Languasco, Applications of some exponential sums on prime powers: A survey, In Proceedings of the “Terzo Incontro Italiano di Teoria dei Numeri”, Scuola Normale Superiore, Pisa, 21-24 Settembre 2015, Rivista di Matematica della Università di Parma, 7: 19–37, 2016.
- A. Languasco and A. Perelli, On Linnik’s theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 2, 307–322 (English, with English and French summaries). MR 1296733
- Alessandro Languasco and Alessandro Zaccagnini, The number of Goldbach representations of an integer, Proc. Amer. Math. Soc. 140 (2012), no. 3, 795–804. MR 2869064, DOI 10.1090/S0002-9939-2011-10957-2
- Alessandro Languasco and Alessandro Zaccagnini, A Cesàro average of Goldbach numbers, Forum Math. 27 (2015), no. 4, 1945–1960. MR 3365783, DOI 10.1515/forum-2012-0100
- U. V. Linnik, A new proof of the Goldbach-Vinogradow theorem, Rec. Math. [Mat. Sbornik] N.S. 19 (61) (1946), 3–8 (Russian, with English summary). MR 0018693
- Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 503–520 (Russian). MR 0053961
Bibliographic Information
- Alessandro Languasco
- Affiliation: Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 354780
- ORCID: 0000-0003-2723-554X
- Email: languasco@math.unipd.it
- Alessandro Zaccagnini
- Affiliation: Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/a, 43124 Parma, Italy
- Email: alessandro.zaccagnini@unipr.it
- Received by editor(s): June 1, 2016
- Received by editor(s) in revised form: November 1, 2016
- Published electronically: May 4, 2017
- Communicated by: Matthew A. Papanikolas
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4175-4186
- MSC (2010): Primary 11P32; Secondary 11P55
- DOI: https://doi.org/10.1090/proc/13645
- MathSciNet review: 3690604