Simple weak modules for the fixed point subalgebra of the Heisenberg vertex operator algebra of rank $1$ by an automorphism of order $2$ and Whittaker vectors
HTML articles powered by AMS MathViewer
- by Kenichiro Tanabe
- Proc. Amer. Math. Soc. 145 (2017), 4127-4140
- DOI: https://doi.org/10.1090/proc/13767
- Published electronically: July 7, 2017
- PDF | Request permission
Abstract:
Let $M(1)$ be the vertex operator algebra with the Virasoro element $\omega$ associated to the Heisenberg algebra of rank $1$ and let $M(1)^{+}$ be the subalgebra of $M(1)$ consisting of the fixed points of an automorphism of $M(1)$ of order $2$. We classify the simple weak $M(1)^{+}$-modules with a non-zero element $w$ such that for some integer $s\geq 2$, $\omega _iw\in \mathbb {C}w$ ($i=\lfloor s/2\rfloor +1,\lfloor s/2\rfloor +2,\ldots ,s-1$), $\omega _{s}w\in \mathbb {C}^{\times }w$, and $\omega _iw=0$ for all $i>s$. The result says that any such simple weak $M(1)^{+}$-module is isomorphic to some simple weak $M(1)$-module or to some $\theta$-twisted simple weak $M(1)$-module.References
- Toshiyuki Abe and Chongying Dong, Classification of irreducible modules for the vertex operator algebra $V^+_L$: general case, J. Algebra 273 (2004), no. 2, 657–685. MR 2037717, DOI 10.1016/j.jalgebra.2003.09.043
- Dražen Adamović, Rencai Lü, and Kaiming Zhao, Whittaker modules for the affine Lie algebra $A_1^{(1)}$, Adv. Math. 289 (2016), 438–479. MR 3439693, DOI 10.1016/j.aim.2015.11.020
- D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra $\textrm {sl}(2)$, J. Mathematical Phys. 15 (1974), 350–359. MR 357527, DOI 10.1063/1.1666651
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI 10.1073/pnas.83.10.3068
- Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde, and Herman Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), no. 3, 485–526. MR 1003430
- Chongying Dong and Robert L. Griess Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), no. 1, 262–275. MR 1644007, DOI 10.1006/jabr.1998.7498
- Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387, DOI 10.1007/978-1-4612-0353-7
- Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321. MR 1430435, DOI 10.1215/S0012-7094-97-08609-9
- Chongying Dong and Kiyokazu Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^+$, J. Algebra 216 (1999), no. 1, 384–404. MR 1694542, DOI 10.1006/jabr.1998.7784
- Chongying Dong and Kiyokazu Nagatomo, Representations of vertex operator algebra $V_L^+$ for rank one lattice $L$, Comm. Math. Phys. 202 (1999), no. 1, 169–195. MR 1686535, DOI 10.1007/s002200050578
- Chongying Dong and Kiyokazu Nagatomo, Classification of irreducible modules for the vertex operator algebra $M(1)^+$. II. Higher rank, J. Algebra 240 (2001), no. 1, 289–325. MR 1830555, DOI 10.1006/jabr.2000.8716
- Ewa Felińska, Zbigniew Jaskólski, and MichałKosztołowicz, Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states, J. Math. Phys. 53 (2012), no. 3, 033504, 16. MR 2798231, DOI 10.1063/1.3692188
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- D. Gaiotto, Asymptotically free $\mathscr {N} = 2$ theories and irregular conformal blocks, Journal of Physics: Conference Series 462 (2013), 012014.
- D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, J. High Energy Phys. 12 (2012), 050, front matter + 76. MR 3045283, DOI 10.1007/JHEP12(2012)050
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195. MR 1387738, DOI 10.1016/0022-4049(95)00079-8
- Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236. MR 1372724, DOI 10.1090/conm/193/02373
- Rencai Lü, Xiangqian Guo, and Kaiming Zhao, Irreducible modules over the Virasoro algebra, Doc. Math. 16 (2011), 709–721. MR 2861395
- Matthew Ondrus and Emilie Wiesner, Whittaker modules for the Virasoro algebra, J. Algebra Appl. 8 (2009), no. 3, 363–377. MR 2535995, DOI 10.1142/S0219498809003370
- Kenichiro Tanabe and Hiromichi Yamada, The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pacific J. Math. 230 (2007), no. 2, 469–510. MR 2309169, DOI 10.2140/pjm.2007.230.469
- Kenichiro Tanabe and Hiromichi Yamada, Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three, J. Math. Soc. Japan 65 (2013), no. 4, 1169–1242. MR 3127822, DOI 10.2969/jmsj/06541169
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Kenichiro Tanabe
- Affiliation: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
- MR Author ID: 616724
- Email: ktanabe@math.sci.hokudai.ac.jp
- Received by editor(s): September 15, 2016
- Published electronically: July 7, 2017
- Additional Notes: The author’s research was partially supported by Grant-in-Aid (No. 15K04770) for Scientific Research, JSPS
- Communicated by: Kailash Misra
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4127-4140
- MSC (2010): Primary 17B69; Secondary 17B68
- DOI: https://doi.org/10.1090/proc/13767
- MathSciNet review: 3690600