Dynamical simplices and minimal homeomorphisms
HTML articles powered by AMS MathViewer
- by Tomás Ibarlucía and Julien Melleray
- Proc. Amer. Math. Soc. 145 (2017), 4981-4994
- DOI: https://doi.org/10.1090/proc/13578
- Published electronically: April 4, 2017
- PDF | Request permission
Abstract:
We give a characterization of sets $K$ of probability measures on a Cantor space $X$ with the property that there exists a minimal homeomorphism $g$ of $X$ such that the set of $g$-invariant probability measures on $X$ coincides with $K$. This extends theorems of Akin (corresponding to the case when $K$ is a singleton) and Dahl (when $K$ is finite-dimensional). Our argument is elementary and different from both Akin’s and Dahl’s.References
- Ethan Akin, Good measures on Cantor space, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2681–2722. MR 2139523, DOI 10.1090/S0002-9947-04-03524-X
- Sergey Bezuglyi, Anthony H. Dooley, and Jan Kwiatkowski, Topologies on the group of homeomorphisms of a Cantor set, Topol. Methods Nonlinear Anal. 27 (2006), no. 2, 299–331. MR 2237457
- S. Bezuglyi and J. Kwiatkowski, Topologies on full groups and normalizers of Cantor minimal systems, Mat. Fiz. Anal. Geom. 9 (2002), no. 3, 455–464. MR 1949801
- S. Bezuglyi and K. Medynets, Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems, Colloq. Math. 110 (2008), no. 2, 409–429. MR 2353913, DOI 10.4064/cm110-2-6
- H. Dahl, Dynamical Choquet simplices and Cantor minimal systems, Cantor minimal systems and AF-equivalence relations, PhD thesis, Copenhagen, 2008. Available at http://hdl.handle.net/11250/249732.
- Tomasz Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), no. 2-3, 241–256. MR 1135237, DOI 10.1007/BF02775789
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762, DOI 10.1090/cbms/046
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320. MR 1710743, DOI 10.1007/BF02810689
- Eli Glasner and Benjamin Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), no. 4, 559–579. MR 1339645, DOI 10.1142/S0129167X95000213
- Richard H. Herman, Ian F. Putnam, and Christian F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864. MR 1194074, DOI 10.1142/S0129167X92000382
- Wolfgang Krieger, On a dimension for a class of homeomorphism groups, Math. Ann. 252 (1979/80), no. 2, 87–95. MR 593623, DOI 10.1007/BF01420115
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Bibliographic Information
- Tomás Ibarlucía
- Affiliation: Université de Lyon, Université Claude Bernard – Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
- MR Author ID: 1161335
- Julien Melleray
- Affiliation: Université de Lyon, Université Claude Bernard – Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
- Address at time of publication: Institut de Math’ematiques de Jussieu–PRG, Université Paris 7, case 7012, 75205 Parist cedex 13, France
- MR Author ID: 781936
- Received by editor(s): December 11, 2015
- Received by editor(s) in revised form: October 28, 2016
- Published electronically: April 4, 2017
- Additional Notes: Research partially supported by Agence Nationale de la Recherche projects GruPoLoCo (ANR-11-JS01-0008) and ValCoMo (ANR-13-BS01-0006).
- Communicated by: Nimish Shah
- © Copyright 2017 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 145 (2017), 4981-4994
- MSC (2010): Primary 54H20; Secondary 37B05
- DOI: https://doi.org/10.1090/proc/13578
- MathSciNet review: 3692011